These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 152642)

  • 21. Ca2+ uptake and affinity of the Ca2+ pump during single cycle catalysis of the sarcoplasmic reticulum ATPase.
    Davidson GA; Berman MC
    Prog Clin Biol Res; 1988; 273():189-94. PubMed ID: 2971229
    [No Abstract]   [Full Text] [Related]  

  • 22. Arginyl residue modification of the sarcoplasmic reticulum ATPase protein.
    Murphy AJ
    Biochem Biophys Res Commun; 1976 Jun; 70(4):1048-54. PubMed ID: 133684
    [No Abstract]   [Full Text] [Related]  

  • 23. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IX. Kinetic studies on the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum.
    Yamada S; Tonomura Y
    J Biochem; 1973 Dec; 74(6):1091-6. PubMed ID: 4273602
    [No Abstract]   [Full Text] [Related]  

  • 24. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.
    Arruda AP; Da-Silva WS; Carvalho DP; De Meis L
    Biochem J; 2003 Nov; 375(Pt 3):753-60. PubMed ID: 12887329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 8. Molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum.
    Yamada S; Sumida M; Tonomura Y
    J Biochem; 1972 Dec; 72(6):1537-48. PubMed ID: 4268997
    [No Abstract]   [Full Text] [Related]  

  • 26. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

  • 27. Factors affecting the transient phase of the Ca2+, Mg2+-dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1978 May; 83(5):1275-84. PubMed ID: 149120
    [No Abstract]   [Full Text] [Related]  

  • 28. Kinetics of the inactivation of the ATPase of sarcoplasmic reticulum by dicyclohexylcarbodiimide.
    Murphy AJ
    J Biol Chem; 1981 Dec; 256(23):12046-50. PubMed ID: 6457831
    [No Abstract]   [Full Text] [Related]  

  • 29. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneity of tryptophanyl residues in the sarcoplasmic reticulum ATPase probed by fluorescence energy transfer between the protein and fluorescent ionophore X537A.
    Verjovski-Almeida S
    J Biol Chem; 1981 Mar; 256(6):2662-8. PubMed ID: 6451619
    [No Abstract]   [Full Text] [Related]  

  • 31. Lanthanide ions and skeletal muscle sarcoplasmic reticulm. I. Gadolinium localization by electron microscopy.
    Remedios CD
    J Biochem; 1977 Mar; 81(3):703-8. PubMed ID: 140864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Labelling of sarcoplasmic reticulum membranes with 1-dimethylaminonaphthalene-5-sulfonyl chloride.
    Katsumata Y; Tanaka F; Hagihara M; Yagi K; Yamanaka N
    Biochim Biophys Acta; 1976 Dec; 455(2):399-411. PubMed ID: 136991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-linking of the sarcoplasmic reticulum ATPase protein.
    Murphy AJ
    Biochem Biophys Res Commun; 1976 May; 70(1):160-6. PubMed ID: 132175
    [No Abstract]   [Full Text] [Related]  

  • 34. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum.
    de Meis L; Tume RK
    Biochemistry; 1977 Oct; 16(20):4455-63. PubMed ID: 20933
    [No Abstract]   [Full Text] [Related]  

  • 35. The calcium pump of cardiac sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits.
    Suko J
    J Physiol; 1973 Feb; 228(3):563-82. PubMed ID: 4267211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of storage of sarcoplasmic reticulum fragments on the Ca2+, Mg2+-ATPase.
    Nakamura J; Konishi K
    J Biochem; 1978 Jun; 83(6):1731-5. PubMed ID: 149789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalyzed by sarcoplasmic reticulum adenosine triphosphatase.
    Boyer PD; de Meis L; da Gloria Costa Carvalho M; Hackney DD
    Biochemistry; 1977 Jan; 16(1):136-40. PubMed ID: 137741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstitution of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP synthesis.
    Kagawa Y
    Biochim Biophys Acta; 1978 Sep; 505(1):45-93. PubMed ID: 30482
    [No Abstract]   [Full Text] [Related]  

  • 39. Cyclic AMP stimulation of membrane phosphorylation and Ca2+-activated, Mg2+-dependent ATPase in cardiac sarcoplasmic reticulum.
    Wray HL; Gray RR
    Biochim Biophys Acta; 1977 Sep; 461(3):441-59. PubMed ID: 197994
    [No Abstract]   [Full Text] [Related]  

  • 40. Rapid kinetics of calcium ion transport and ATPase activity in the sarcoplasmic reticulum of dystrophic muscle.
    Verjovski-Almeida S; Inesi G
    Biochim Biophys Acta; 1979 Nov; 558(1):119-25. PubMed ID: 159072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.