These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 15264255)
1. Classical force field parameters for the heme prosthetic group of cytochrome c. Autenrieth F; Tajkhorshid E; Baudry J; Luthey-Schulten Z J Comput Chem; 2004 Oct; 25(13):1613-22. PubMed ID: 15264255 [TBL] [Abstract][Full Text] [Related]
2. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. Oda A; Yamaotsu N; Hirono S J Comput Chem; 2005 Jun; 26(8):818-26. PubMed ID: 15812779 [TBL] [Abstract][Full Text] [Related]
3. Molecular basis for the electric field modulation of cytochrome C structure and function. De Biase PM; Paggi DA; Doctorovich F; Hildebrandt P; Estrin DA; Murgida DH; Marti MA J Am Chem Soc; 2009 Nov; 131(44):16248-56. PubMed ID: 19886701 [TBL] [Abstract][Full Text] [Related]
4. Ab initio molecular dynamics of heme in cytochrome c. Furlan S; Penna GL; Banci L; Mealli C J Phys Chem B; 2007 Feb; 111(5):1157-64. PubMed ID: 17266270 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics study of Desulfovibrio africanus cytochrome c3 in oxidized and reduced forms. Bret C; Roth M; Nørager S; Hatchikian EC; Field MJ Biophys J; 2002 Dec; 83(6):3049-65. PubMed ID: 12496077 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations. Soares CM; Martel PJ; Mendes J; Carrondo MA Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034 [TBL] [Abstract][Full Text] [Related]
7. Development of the force field parameters for phosphoimidazole and phosphohistidine. Kosinsky YA; Volynsky PE; Lagant P; Vergoten G; Suzuki E; Arseniev AS; Efremov RG J Comput Chem; 2004 Aug; 25(11):1313-21. PubMed ID: 15185324 [TBL] [Abstract][Full Text] [Related]
8. Molecular basis for redox-Bohr and cooperative effects in cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774: crystallographic and modeling studies of oxidized and reduced high-resolution structures at pH 7.6. Bento I; Matias PM; Baptista AM; da Costa PN; van Dongen WM; Saraiva LM; Schneider TR; Soares CM; Carrondo MA Proteins; 2004 Jan; 54(1):135-52. PubMed ID: 14705030 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the electron carrier domain of the reaction center cytochrome c(z) subunit from green photosynthetic bacterium Chlorobium tepidum. Hirano Y; Higuchi M; Azai C; Oh-Oka H; Miki K; Wang ZY J Mol Biol; 2010 Apr; 397(5):1175-87. PubMed ID: 20156447 [TBL] [Abstract][Full Text] [Related]
10. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes. Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196 [TBL] [Abstract][Full Text] [Related]
11. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
12. Amino acid sequence, crystallization and structure determination of reduced and oxidized cytochrome c6 from the green alga Scenedesmus obliquus. Schnackenberg J; Than ME; Mann K; Wiegand G; Huber R; Reuter W J Mol Biol; 1999 Jul; 290(5):1019-30. PubMed ID: 10438600 [TBL] [Abstract][Full Text] [Related]
13. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics. Koca J; Zhan CG; Rittenhouse RC; Ornstein RL J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728 [TBL] [Abstract][Full Text] [Related]
14. Structure of the soluble domain of cytochrome c(552) from Paracoccus denitrificans in the oxidized and reduced states. Harrenga A; Reincke B; Rüterjans H; Ludwig B; Michel H J Mol Biol; 2000 Jan; 295(3):667-78. PubMed ID: 10623555 [TBL] [Abstract][Full Text] [Related]
15. Lennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential. Freindorf M; Shao Y; Furlani TR; Kong J J Comput Chem; 2005 Sep; 26(12):1270-8. PubMed ID: 15965971 [TBL] [Abstract][Full Text] [Related]
16. An approach to developing a force field for molecular simulation of martensitic phase transitions between phases with subtle differences in energy and structure. Tuble SC; Anwar J; Gale JD J Am Chem Soc; 2004 Jan; 126(1):396-405. PubMed ID: 14709107 [TBL] [Abstract][Full Text] [Related]
17. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy. Schweitzer-Stenner R J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633 [TBL] [Abstract][Full Text] [Related]
18. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c. Shafiey H; Ghourchian H; Mogharrab N Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656 [TBL] [Abstract][Full Text] [Related]
19. A molecular mechanics force field for biologically important sterols. Cournia Z; Smith JC; Ullmann GM J Comput Chem; 2005 Oct; 26(13):1383-99. PubMed ID: 16028234 [TBL] [Abstract][Full Text] [Related]
20. Functional roles of the heme architecture and its environment in tetraheme cytochrome c. Akutsu H; Takayama Y Acc Chem Res; 2007 Mar; 40(3):171-8. PubMed ID: 17370988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]