These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1207 related articles for article (PubMed ID: 15264259)

  • 21. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculation of the water-cyclohexane transfer free energies of neutral amino acid side-chain analogs using the OPLS all-atom force field.
    MacCallum JL; Tieleman DP
    J Comput Chem; 2003 Nov; 24(15):1930-5. PubMed ID: 14515375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico prediction of drug solubility: 4. Will simple potentials suffice?
    Lüder K; Lindfors L; Westergren J; Nordholm S; Persson R; Pedersen M
    J Comput Chem; 2009 Sep; 30(12):1859-71. PubMed ID: 19115279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free energy profiles of amino acid side chain analogs near water-vapor interface obtained via MD simulations.
    Shaytan AK; Ivanov VA; Shaitan KV; Khokhlov AR
    J Comput Chem; 2010 Jan; 31(1):204-16. PubMed ID: 19421988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New Interaction Parameters for Oxygen Compounds in the GROMOS Force Field: Improved Pure-Liquid and Solvation Properties for Alcohols, Ethers, Aldehydes, Ketones, Carboxylic Acids, and Esters.
    Horta BA; Fuchs PF; van Gunsteren WF; Hünenberger PH
    J Chem Theory Comput; 2011 Apr; 7(4):1016-31. PubMed ID: 26606351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of two simulation methods to compute solvation free energies and partition coefficients.
    Yang L; Ahmed A; Sandler SI
    J Comput Chem; 2013 Feb; 34(4):284-93. PubMed ID: 23109246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of the 53A6 GROMOS force field.
    Oostenbrink C; Soares TA; van der Vegt NF; van Gunsteren WF
    Eur Biophys J; 2005 Jun; 34(4):273-84. PubMed ID: 15803330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydration free energies of amino acids: why side chain analog data are not enough.
    König G; Boresch S
    J Phys Chem B; 2009 Jul; 113(26):8967-74. PubMed ID: 19507836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applicability of a continuum solvation model to the octanol water transfer: CFF91 based model for amino acids.
    Schmidt AB; Fine RM
    Biopolymers; 1995 Nov; 36(5):599-605. PubMed ID: 7578951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reoptimized interaction parameters for the peptide-backbone model compound N-methylacetamide in the GROMOS force field: influence on the folding properties of two beta-peptides in methanol.
    Horta BA; Lin Z; Huang W; Riniker S; van Gunsteren WF; Hünenberger PH
    J Comput Chem; 2012 Sep; 33(24):1907-17. PubMed ID: 22648867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ionic force field optimization based on single-ion and ion-pair solvation properties.
    Fyta M; Kalcher I; Dzubiella J; Vrbka L; Netz RR
    J Chem Phys; 2010 Jan; 132(2):024911. PubMed ID: 20095713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.
    Yang ZZ; Li X
    J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.
    Garrido NM; Jorge M; Queimada AJ; Gomes JR; Economou IG; Macedo EA
    Phys Chem Chem Phys; 2011 Oct; 13(38):17384-94. PubMed ID: 21881653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvation model based on order parameters and a fast sampling method for the calculation of the solvation free energies of peptides.
    Gu C; Lustig S; Trout BL
    J Phys Chem B; 2006 Jan; 110(3):1476-84. PubMed ID: 16471699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation of hen egg white lysozyme: a test of the GROMOS96 force field against nuclear magnetic resonance data.
    Stocker U; van Gunsteren WF
    Proteins; 2000 Jul; 40(1):145-53. PubMed ID: 10813839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.
    Horn HW; Swope WC; Pitera JW; Madura JD; Dick TJ; Hura GL; Head-Gordon T
    J Chem Phys; 2004 May; 120(20):9665-78. PubMed ID: 15267980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 61.