These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15264326)

  • 1. Influence of cross-linked PMMA beads on the mechanical behavior of self-curing acrylic cements.
    Vallo CI; Abraham GA; Cuadrado TR; San Román J
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):407-16. PubMed ID: 15264326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of self-curing acrylic cements formulated with poly(methylmethacrylate)/poly(epsilon-caprolactone) beads.
    Abraham GA; Vallo CI; San Román J; Cuadrado TR
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):340-7. PubMed ID: 15264317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate).
    Deb S; Vazquez B; Bonfield W
    J Biomed Mater Res; 1997 Dec; 37(4):465-73. PubMed ID: 9407294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement.
    Roether JA; Deb S
    J Mater Sci Mater Med; 2004 Apr; 15(4):413-8. PubMed ID: 15332609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement.
    Puska MA; Närhi TO; Aho AJ; Yli-Urpo A; Vallittu PK
    J Mater Sci Mater Med; 2004 Sep; 15(9):1037-43. PubMed ID: 15448412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel materials 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components.
    Moszner N; Gianasmidis A; Klapdohr S; Fischer UK; Rheinberger V
    Dent Mater; 2008 Jun; 24(6):851-6. PubMed ID: 18045680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexural strength distribution of a PMMA-based bone cement.
    Vallo CI
    J Biomed Mater Res; 2002; 63(2):226-36. PubMed ID: 11870658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.
    Abboud M; Casaubieilh L; Morvan F; Fontanille M; Duguet E
    J Biomed Mater Res; 2000; 53(6):728-36. PubMed ID: 11074433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the flexural strength of five adhesive resin cements.
    Pace LL; Hummel SK; Marker VA; Bolouri A
    J Prosthodont; 2007; 16(1):18-24. PubMed ID: 17244303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel self-healing dental luting cements with microcapsules for indirect restorations.
    Wu J; Zhang Q; Weir MD; Oates TW; Zhou C; Chang X; Xu HHK
    J Dent; 2017 Nov; 66():76-82. PubMed ID: 28826985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and physical properties of carbon-graphite fiber-reinforced polymers intended for implant suprastructures.
    Segerström S; Ruyter IE
    Dent Mater; 2007 Sep; 23(9):1150-6. PubMed ID: 17118439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating.
    Yi M; Sun H; Zhang H; Deng X; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():742-9. PubMed ID: 26478367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers.
    De S; Vazquez B
    Biomaterials; 2001 Aug; 22(15):2177-81. PubMed ID: 11432598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties.
    Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Kitamura Y; Kokubo T; Nakamura T
    J Biomed Mater Res; 2000 Aug; 51(2):258-72. PubMed ID: 10825226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing mechanical properties of an injectable two-solution acrylic bone cement using a difunctional crosslinker.
    Wiegand MJ; Faraci KL; Reed BE; Hasenwinkel JM
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):783-790. PubMed ID: 30184331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of new acrylic bone cements prepared with oleic acid derivatives.
    Vázquez B; Deb S; Bonfield W; Román JS
    J Biomed Mater Res; 2002; 63(2):88-97. PubMed ID: 11870640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate).
    Shinzato S; Nakamura T; Ando K; Kokubo T; Kitamura Y
    J Biomed Mater Res; 2002 Jun; 60(4):556-63. PubMed ID: 11948514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modifying dental composites to formulate novel methacrylate-based bone cements with improved polymerisation kinetics, and mechanical properties.
    Khan MA; Delgado AH; Young AM
    Dent Mater; 2023 Dec; 39(12):1067-1075. PubMed ID: 37821331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.