BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15264807)

  • 1. Enzymatic resolution of chiral phosphinate esters.
    Li Y; Aubert SD; Maes EG; Raushel FM
    J Am Chem Soc; 2004 Jul; 126(29):8888-9. PubMed ID: 15264807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.
    Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM
    J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site.
    Hill CM; Li WS; Thoden JB; Holden HM; Raushel FM
    J Am Chem Soc; 2003 Jul; 125(30):8990-1. PubMed ID: 15369336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase.
    Tsai PC; Fan Y; Kim J; Yang L; Almo SC; Gao YQ; Raushel FM
    Biochemistry; 2010 Sep; 49(37):7988-97. PubMed ID: 20695627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselectivity of phosphotriesterase with paraoxon derivatives: a computational study.
    Zhan D; Guan S; Jin H; Han W; Wang S
    J Biomol Struct Dyn; 2016; 34(3):600-11. PubMed ID: 25929154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a phosphinate analogue of the anti-tumour phosphate di-ester perifosine via sequential radical processes.
    Markoulides MS; Regan AC
    Org Biomol Chem; 2013 Jan; 11(1):119-29. PubMed ID: 23073600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase.
    Tsai PC; Bigley A; Li Y; Ghanem E; Cadieux CL; Kasten SA; Reeves TE; Cerasoli DM; Raushel FM
    Biochemistry; 2010 Sep; 49(37):7978-87. PubMed ID: 20701311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereochemical constraints on the substrate specificity of phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1999 Jan; 38(4):1159-65. PubMed ID: 9930975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic approach to enantiomerically pure 5-alken-2,4-diols and 4-hydroxy-5-alken-2-ones: application to the synthesis of chiral synthons.
    Abate A; Brenna E; Costantini A; Fuganti C; Gatti FG; Malpezzi L; Serra S
    J Org Chem; 2006 Jul; 71(14):5228-40. PubMed ID: 16808510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient and practical chemoenzymatic preparation of optically active secondary amines.
    Hu S; Tat D; Martinez CA; Yazbeck DR; Tao J
    Org Lett; 2005 Sep; 7(20):4329-31. PubMed ID: 16178525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variants of Phosphotriesterase for the Enhanced Detoxification of the Chemical Warfare Agent VR.
    Bigley AN; Mabanglo MF; Harvey SP; Raushel FM
    Biochemistry; 2015 Sep; 54(35):5502-12. PubMed ID: 26274608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiodifferentiation of N-benzyloxycarbonylaminophosphonic and phosphinic acids and their esters using cyclodextrins by means of capillary electrophoresis.
    Rudzińska E; Poliwoda A; Berlicki Ł; Mucha A; Dzygiel P; Wieczorek PP; Kafarski P
    J Chromatogr A; 2007 Jan; 1138(1-2):284-90. PubMed ID: 17097095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting substrates by docking high-energy intermediates to enzyme structures.
    Hermann JC; Ghanem E; Li Y; Raushel FM; Irwin JJ; Shoichet BK
    J Am Chem Soc; 2006 Dec; 128(49):15882-91. PubMed ID: 17147401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operational control of stereoselectivity during the enzymatic hydrolysis of racemic organophosphorus compounds.
    Li Y; Aubert SD; Raushel FM
    J Am Chem Soc; 2003 Jun; 125(25):7526-7. PubMed ID: 12812487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of phosphonamidate peptides by Staudinger reactions of silylated phosphinic acids and esters.
    Wilkening I; del Signore G; Hackenberger CP
    Chem Commun (Camb); 2011 Jan; 47(1):349-51. PubMed ID: 20830364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for the asymmetric synthesis of H-phosphinate esters.
    Bravo-Altamirano K; Coudray L; Deal EL; Montchamp JL
    Org Biomol Chem; 2010 Dec; 8(24):5541-51. PubMed ID: 20978651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Mechanism of the Phosphotriesterase from Sphingobium sp. Strain TCM1, an Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants.
    Bigley AN; Xiang DF; Ren Z; Xue H; Hull KG; Romo D; Raushel FM
    J Am Chem Soc; 2016 Mar; 138(9):2921-4. PubMed ID: 26907457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atropselective Hydrolysis of Chiral Binol-Phosphate Esters Catalyzed by the Phosphotriesterase from
    Xiang DF; Narindoshvili T; Raushel FM
    Biochemistry; 2020 Nov; 59(46):4463-4469. PubMed ID: 33167613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantiocomplementary enzymatic resolution of the chiral auxiliary: cis,cis-6-(2,2-dimethylpropanamido)spiro[4.4]nonan-1-ol and the molecular basis for the high enantioselectivity of subtilisin Carlsberg.
    Mugford PF; Lait SM; Keay BA; Kazlauskas RJ
    Chembiochem; 2004 Jul; 5(7):980-7. PubMed ID: 15239056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring stereochemical specificity of phosphotriesterase by MM-PBSA and MM-GBSA calculation and steered molecular dynamics simulation.
    Zhu J; Li X; Zhang S; Ye H; Zhao H; Jin H; Han W
    J Biomol Struct Dyn; 2017 Nov; 35(14):3140-3151. PubMed ID: 27691783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.