These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15264809)

  • 1. Fluorescent GTP-sensing in aqueous solution of physiological pH.
    Kwon JY; Singh NJ; Kim HN; Kim SK; Kim KS; Yoon J
    J Am Chem Soc; 2004 Jul; 126(29):8892-3. PubMed ID: 15264809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly selective fluorescent chemosensor for guanosine-5'-triphosphate via excimer formation in aqueous solution of physiological pH.
    Ahmed N; Shirinfar B; Youn IS; Bist A; Suresh V; Kim KS
    Chem Commun (Camb); 2012 Mar; 48(21):2662-4. PubMed ID: 22222484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent imidazolium-based cyclophane for detection of guanosine-5'-triphosphate and I(-) in aqueous solution of physiological pH.
    Ahmed N; Shirinfar B; Geronimo I; Kim KS
    Org Lett; 2011 Oct; 13(20):5476-9. PubMed ID: 21942818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bis- and tris-naphthoimidazolium derivatives for the fluorescent recognition of ATP and GTP in 100% aqueous solution.
    Xu Z; Song NR; Moon JH; Lee JY; Yoon J
    Org Biomol Chem; 2011 Dec; 9(24):8340-5. PubMed ID: 22052071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent sensing of triphosphate nucleotides via anthracene derivatives.
    Kim HN; Moon JH; Kim SK; Kwon JY; Jang YJ; Lee JY; Yoon J
    J Org Chem; 2011 May; 76(10):3805-11. PubMed ID: 21500816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique X-ray sheet structure of 1,8-bis(imidazolium) anthracene and its application as a fluorescent probe for DNA and DNase.
    Kim HN; Lim J; Lee HN; Ryu JW; Kim MJ; Lee J; Lee DU; Kim Y; Kim SJ; Lee KD; Lee HS; Yoon J
    Org Lett; 2011 Mar; 13(6):1314-7. PubMed ID: 21348457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive colorimetric and fluorescent sensor based on imidazolium-functionalized squaraines for the detection of GTP and alkaline phosphatase in aqueous solution.
    Wu N; Lan J; Yan L; You J
    Chem Commun (Camb); 2014 May; 50(34):4438-41. PubMed ID: 24643794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,1'-Binaphthyl-based imidazolium chemosensors for highly selective recognition of tryptophan in aqueous solutions.
    Yang L; Qin S; Su X; Yang F; You J; Hu C; Xie R; Lan J
    Org Biomol Chem; 2010 Jan; 8(2):339-48. PubMed ID: 20066268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe(3+)-selective fluorescent probe based on aminoantipyrine in aqueous solution.
    Zhou Y; Zhou H; Zhang J; Zhang L; Niu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 98():14-7. PubMed ID: 22982382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation-induced emission characteristics.
    Lu H; Xu B; Dong Y; Chen F; Li Y; Li Z; He J; Li H; Tian W
    Langmuir; 2010 May; 26(9):6838-44. PubMed ID: 20112939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence detection of adenosine triphosphate in an aqueous solution using a combination of copper(II) complexes.
    Kataev E; Arnold R; Rüffer T; Lang H
    Inorg Chem; 2012 Aug; 51(15):7948-50. PubMed ID: 22789028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective detection of guanosine-5'-triphosphate and iodide by fluorescent benzimidazolium-based cyclophanes.
    Ahmed N; Shirinfar B; Youn IS; Yousuf M; Kim KS
    Org Biomol Chem; 2013 Oct; 11(37):6407-13. PubMed ID: 23959564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents.
    Saleh N; Al-Soud YA; Nau WM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):818-22. PubMed ID: 18343715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of dual-emission chemosensors for ratiometric detection of ATP derivatives.
    Ojida A; Miyahara Y; Wongkongkatep J; Tamaru S; Sada K; Hamachi I
    Chem Asian J; 2006 Oct; 1(4):555-63. PubMed ID: 17441093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of anthracene-appended amino acids as highly selective and sensitive fluorescent Fe3+ ion sensors.
    Lohani CR; Kim JM; Lee KH
    Bioorg Med Chem Lett; 2009 Nov; 19(21):6069-73. PubMed ID: 19796937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cholic acid-based fluorescent chemosenor for the detection of ATP.
    Wang H; Chan WH
    Org Biomol Chem; 2008 Jan; 6(1):162-8. PubMed ID: 18075662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective fluorescent probe for pyrophosphate in aqueous solution.
    Sun Y; Zhong C; Gong R; Fu E
    Org Biomol Chem; 2008 Sep; 6(17):3044-7. PubMed ID: 18698460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminonaphthalimide-based imidazolium podands for turn-on fluorescence sensing of nucleoside polyphosphates.
    Wang D; Zhang X; He C; Duan C
    Org Biomol Chem; 2010 Jun; 8(13):2923-5. PubMed ID: 20448883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective detection of ATP and ADP in aqueous solution by using a fluorescent zinc receptor.
    Strianese M; Milione S; Maranzana A; Grassi A; Pellecchia C
    Chem Commun (Camb); 2012 Dec; 48(93):11419-21. PubMed ID: 23086379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH.
    Xu Z; Singh NJ; Lim J; Pan J; Kim HN; Park S; Kim KS; Yoon J
    J Am Chem Soc; 2009 Oct; 131(42):15528-33. PubMed ID: 19919166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.