BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 152649)

  • 1. Properties of three distinct pyrimide transport systems in yeast. Evidence for distinct energy coupling.
    Losson R; Jund R; Chevallier MR
    Biochim Biophys Acta; 1978 Nov; 513(2):296-300. PubMed ID: 152649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The utilization of exogenous pyrimidines and the recycling of uridine-5'-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism.
    Grenson M
    Eur J Biochem; 1969 Dec; 11(2):249-60. PubMed ID: 4311780
    [No Abstract]   [Full Text] [Related]  

  • 3. Uracil transport in Saccharomyces cerevisiae.
    Jund R; Chevallier MR; Lacroute F
    J Membr Biol; 1977 Sep; 36(2-3):233-51. PubMed ID: 20507
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of cytosine permeation in Saccharomyces cerevisiae.
    Chevallier MR; Jund R; Lacroute F
    J Bacteriol; 1975 May; 122(2):629-41. PubMed ID: 47858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ureidosuccinic acid permeation in Saccharomyces cerevisiae.
    Greth ML; Chevallier MR; Lacroute F
    Biochim Biophys Acta; 1977 Feb; 465(1):138-51. PubMed ID: 13831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of energy coupling for transport of deoxycytidine, uridine, uracil, adenine and hypoxanthine in Escherichia coli.
    Roy-Burman S; von Dippe PJ; Visser DW
    Biochim Biophys Acta; 1978 Aug; 511(2):285-96. PubMed ID: 354696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic studies of the pyrimidine permeases from Saccharomyces cerevisiae: lack of intragenic complementation.
    Parlebas N; Chevallier MR
    Mol Gen Genet; 1977 Jul; 154(2):199-202. PubMed ID: 331085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3' :5'-monophosphate in the yeast Schizosaccharomyces pombe.
    Foury F; Goffeau A
    J Biol Chem; 1975 Mar; 250(6):2354-62. PubMed ID: 163826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uracil-induced down-regulation of the yeast uracil permease.
    Séron K; Blondel MO; Haguenauer-Tsapis R; Volland C
    J Bacteriol; 1999 Mar; 181(6):1793-800. PubMed ID: 10074071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replacement of Lys by Glu in a transmembrane segment strongly impairs the function of the uracil permease from Saccharomyces cerevisiae.
    Urban-Grimal D; Pinson B; Chevallier J; Haguenauer-Tsapis R
    Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):847-51. PubMed ID: 8948441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease.
    Pinson B; Chevallier J; Urban-Grimal D
    Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):37-42. PubMed ID: 10085225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes.
    Vickers MF; Yao SY; Baldwin SA; Young JD; Cass CE
    J Biol Chem; 2000 Aug; 275(34):25931-8. PubMed ID: 10827169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoaffinity labelling of the purine-cytosine permease of Saccharomyces cerevisiae.
    Chirio MC; Brèthes D; Napias C; Grandier-Vazeille X; Rakotomanana F; Chevallier J
    Eur J Biochem; 1990 Nov; 194(1):293-9. PubMed ID: 2253621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and physiological aspects of resistance to 5-fluoropyrimidines in Saccharomyces cerevisiae.
    Jund R; Lacroute F
    J Bacteriol; 1970 Jun; 102(3):607-15. PubMed ID: 5429721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of pyrimidines and their derivatives into Candida glabrata and Candida albicans.
    Fasoli MO; Kerridge D
    J Gen Microbiol; 1990 Aug; 136(8):1475-81. PubMed ID: 2262788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of ferrienterochelin by Escherichia coli: energy dependent stage of uptake.
    Pugsley AP; Reeves P
    J Bacteriol; 1977 Apr; 130(1):26-36. PubMed ID: 140161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fenpropimorph affects uptake of uracil and cytosine in Saccharomyces cerevisiae.
    Crowley JH; Lorenz RT; Parks LW
    Antimicrob Agents Chemother; 1994 May; 38(5):1004-7. PubMed ID: 8067730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Saccharomyces cerevisiae cytosine transporter using energizable plasma membrane vesicles.
    Pinson B; Napias C; Chevallier J; Van den Broek PJ; Brèthes D
    J Biol Chem; 1997 Nov; 272(46):28918-24. PubMed ID: 9360962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of L-[14C]leucine transport in Saccharomyces cerevisiae: effect of energy coupling inhibitors.
    Ramos EH; de Bongioanni LC; Stoppani AO
    Biochim Biophys Acta; 1980 Jun; 599(1):214-31. PubMed ID: 6994811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.