These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15265336)

  • 1. Chronic mountain sickness: recent studies of the relationship between hemoglobin concentration and oxygen transport.
    Reeves JT; Leon-Velarde F
    High Alt Med Biol; 2004; 5(2):147-55. PubMed ID: 15265336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II.
    Wagner PD; Wagner HE; Groves BM; Cymerman A; Houston CS
    High Alt Med Biol; 2007; 8(1):32-42. PubMed ID: 17394415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal hemoglobin concentration and high altitude: a theoretical approach for Andean men at rest.
    Villafuerte FC; Cárdenas R; Monge-C C
    J Appl Physiol (1985); 2004 May; 96(5):1581-8. PubMed ID: 14672972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic mountain sickness in Chinese Han males who migrated to the Qinghai-Tibetan plateau: application and evaluation of diagnostic criteria for chronic mountain sickness.
    Jiang C; Chen J; Liu F; Luo Y; Xu G; Shen HY; Gao Y; Gao W
    BMC Public Health; 2014 Jul; 14():701. PubMed ID: 25007716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen transport system before and after exposure to chronic hypoxia.
    Ferretti G; Boutellier U; Pendergast DR; Moia C; Minetti AE; Howald H; di Prampero PE
    Int J Sports Med; 1990 Feb; 11 Suppl 1():S15-20. PubMed ID: 2323858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hemoglobin concentration on critical cardiac output and oxygen transport.
    Heusser F; Fahey JT; Lister G
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H527-32. PubMed ID: 2916686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does chronic mountain sickness (CMS) have perinatal origins?
    Moore LG; Niermeyer S; Vargas E
    Respir Physiol Neurobiol; 2007 Sep; 158(2-3):180-9. PubMed ID: 17706469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of inspired oxygen, carbon dioxide, and carbon monoxide on oxygen transport and aerobic capacity.
    Crocker GH; Toth B; Jones JH
    J Appl Physiol (1985); 2013 Sep; 115(5):643-52. PubMed ID: 23813529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red blood cell function in hypoxia at altitude and exercise.
    Mairbäurl H
    Int J Sports Med; 1994 Feb; 15(2):51-63. PubMed ID: 8157369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain Sickness.
    Villafuerte FC; Macarlupú JL; Anza-Ramírez C; Corrales-Melgar D; Vizcardo-Galindo G; Corante N; León-Velarde F
    J Appl Physiol (1985); 2014 Dec; 117(11):1356-62. PubMed ID: 25324511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia.
    Burtscher M; Flatz M; Faulhaber M
    High Alt Med Biol; 2004; 5(3):335-40. PubMed ID: 15453999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure of polycythemia-induced increase in arterial oxygen content to suppress the anorexic effect of simulated high altitude in the adult rat.
    Norese MF; Lezón CE; Alippi RM; Martínez MP; Conti MI; Bozzini CE
    High Alt Med Biol; 2002; 3(1):49-57. PubMed ID: 12006164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic mountain sickness. A view from the crow's nest.
    Reeves JT; Weil JV
    Adv Exp Med Biol; 2001; 502():419-37. PubMed ID: 11950154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis.
    León-Velarde F; Monge CC; Vidal A; Carcagno M; Criscuolo M; Bozzini CE
    Exp Hematol; 1991 May; 19(4):257-60. PubMed ID: 2055289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic mountain sickness and chronic lower respiratory tract disorders.
    León-Velarde F; Arregui A; Vargas M; Huicho L; Acosta R
    Chest; 1994 Jul; 106(1):151-5. PubMed ID: 8020264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spleen contraction elevates hemoglobin concentration at high altitude during rest and exercise.
    Schagatay E; Lunde A; Nilsson S; Palm O; Lodin-Sundström A
    Eur J Appl Physiol; 2020 Dec; 120(12):2693-2704. PubMed ID: 32910244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiological effects of hemodilution in chronic mountain sickness in rats.
    Du HK; Lee YJ; Colice GL; Leiter JC; Ou LC
    J Appl Physiol (1985); 1996 Feb; 80(2):574-82. PubMed ID: 8929601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association Between Plasma N-Acylethanolamides and High Hemoglobin Concentration in Southern Peruvian Highlanders.
    Alarcón-Yaquetto DE; Caballero L; Gonzales GF
    High Alt Med Biol; 2017 Dec; 18(4):322-329. PubMed ID: 28665150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of the ventilatory response in subjects susceptible to high altitude pulmonary edema during acute and prolonged hypoxia.
    Schirlo C; Pavlicek V; Jacomet A; Gibbs JS; Koller E; Oelz O; Seebauer M; Kohl J
    High Alt Med Biol; 2002; 3(3):267-76. PubMed ID: 12396880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clarification of the effects of changes in P50 on oxygen transport.
    Aberman A; Hew E
    Acute Care; 1985; 11(3-4):216-21. PubMed ID: 3916400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.