BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15266182)

  • 1. A method to quantify the uptake rate of 2-[18F]fluoro-2-deoxy-D-glucose in tissues.
    Laffon E; Allard M; Marthan R; Ducassou D
    Nucl Med Commun; 2004 Aug; 25(8):851-4. PubMed ID: 15266182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 18F-FDG uptake and clearance in patients with compromised renal function.
    Akers SR; Werner TJ; Rubello D; Alavi A; Cheng G
    Nucl Med Commun; 2016 Aug; 37(8):825-32. PubMed ID: 27058366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification in clinical fluorodeoxyglucose positron emission tomography.
    Hallett WA
    Nucl Med Commun; 2004 Jul; 25(7):647-50. PubMed ID: 15208490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of 2-[Fluorine-18]-Fluoro-2-deoxy-D-glucose uptake kinetics in PET studies of pulmonary inflammation.
    Schroeder T; Melo MF; Venegas JG
    Acad Radiol; 2011 Apr; 18(4):418-23. PubMed ID: 21292507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET.
    Visser EP; Philippens ME; Kienhorst L; Kaanders JH; Corstens FH; de Geus-Oei LF; Oyen WJ
    J Nucl Med; 2008 Jun; 49(6):892-8. PubMed ID: 18483085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies.
    Strauss LG; Pan L; Cheng C; Haberkorn U; Dimitrakopoulou-Strauss A
    J Nucl Med; 2011 Mar; 52(3):379-85. PubMed ID: 21321263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Narrow time-window dual-point 18F-FDG PET for the diagnosis of thoracic malignancy.
    Conrad GR; Sinha P
    Nucl Med Commun; 2003 Nov; 24(11):1129-37. PubMed ID: 14569166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interobserver agreement of qualitative analysis and tumor delineation of 18F-fluoromisonidazole and 3'-deoxy-3'-18F-fluorothymidine PET images in lung cancer.
    Thureau S; Chaumet-Riffaud P; Modzelewski R; Fernandez P; Tessonnier L; Vervueren L; Cachin F; Berriolo-Riedinger A; Olivier P; Kolesnikov-Gauthier H; Blagosklonov O; Bridji B; Devillers A; Collombier L; Courbon F; Gremillet E; Houzard C; Caignon JM; Roux J; Aide N; Brenot-Rossi I; Doyeux K; Dubray B; Vera P
    J Nucl Med; 2013 Sep; 54(9):1543-50. PubMed ID: 23918733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the amount of FDG uptake in physiological tissues.
    Laffon E; de Clermont H; Lamare F; Marthan R
    Nucl Med Biol; 2014 Oct; 41(9):717-20. PubMed ID: 25073424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of methods to quantitate 18F-FDG uptake with PET during experimental acute lung injury.
    Chen DL; Mintun MA; Schuster DP
    J Nucl Med; 2004 Sep; 45(9):1583-90. PubMed ID: 15347728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics.
    Strauss LG; Dimitrakopoulou-Strauss A; Haberkorn U
    J Nucl Med; 2003 Dec; 44(12):1933-9. PubMed ID: 14660719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic review of the factors affecting accuracy of SUV measurements.
    Adams MC; Turkington TG; Wilson JM; Wong TZ
    AJR Am J Roentgenol; 2010 Aug; 195(2):310-20. PubMed ID: 20651185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus.
    Mäkinen TJ; Lankinen P; Pöyhönen T; Jalava J; Aro HT; Roivainen A
    Eur J Nucl Med Mol Imaging; 2005 Nov; 32(11):1259-68. PubMed ID: 16007423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.
    Trägårdh M; Møller N; Sørensen M
    J Nucl Med; 2015 Sep; 56(9):1366-71. PubMed ID: 26159590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of standard uptake value in dual-head coincidence system.
    Geng J; Chen Y; Chen S; Si H; Tian J
    Biomed Mater Eng; 2007; 17(4):219-27. PubMed ID: 17611297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial volume correction of standardized uptake values and the dual time point in FDG-PET imaging: should these be routinely employed in assessing patients with cancer?
    Basu S; Alavi A
    Eur J Nucl Med Mol Imaging; 2007 Oct; 34(10):1527-9. PubMed ID: 17522857
    [No Abstract]   [Full Text] [Related]  

  • 17. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5.
    Hashimoto Y; Tsujikawa T; Kondo C; Maki M; Momose M; Nagai A; Ohnuki T; Nishikawa T; Kusakabe K
    J Nucl Med; 2006 Mar; 47(3):426-31. PubMed ID: 16513611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An input function estimation method for FDG-PET human brain studies.
    Guo H; Renaut RA; Chen K
    Nucl Med Biol; 2007 Jul; 34(5):483-92. PubMed ID: 17591548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High intraindividual variability of global myocardial 18F-FDG uptake over time.
    Zöphel K; Kotzerke J
    J Nucl Med; 2008 Sep; 49(9):1570; author reply 1570-1. PubMed ID: 18703615
    [No Abstract]   [Full Text] [Related]  

  • 20. Simplified kinetic analysis of tumor 18F-FDG uptake: a dynamic approach.
    Sundaram SK; Freedman NM; Carrasquillo JA; Carson JM; Whatley M; Libutti SK; Sellers D; Bacharach SL
    J Nucl Med; 2004 Aug; 45(8):1328-33. PubMed ID: 15299057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.