These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 1526662)
21. Protective effects of insulin during ischemia-reperfusion injury in hamster cheek pouch microcirculation. Colantuoni A; Lapi D; Paterni M; Marchiafava PL J Vasc Res; 2005; 42(1):55-66. PubMed ID: 15637441 [TBL] [Abstract][Full Text] [Related]
22. Methotrexate potentiates bradykinin-induced increase in macromolecular efflux from the hamster oral mucosa. Gao XP; Rubinstein I Am J Physiol; 1997 Oct; 273(4):R1254-62. PubMed ID: 9362288 [TBL] [Abstract][Full Text] [Related]
23. The stable VIP analogue, Ro 24-9981, potentiates bradykinin-induced increases in clearance of macromolecules. Gao XP; Rubinstein I Am J Physiol; 1995 Nov; 269(5 Pt 2):H1648-55. PubMed ID: 7503261 [TBL] [Abstract][Full Text] [Related]
24. Role of nitric oxide and reactive oxygen species in platelet-activating factor-induced microvascular leakage. Klabunde RE; Anderson DE J Vasc Res; 2002; 39(3):238-45. PubMed ID: 12097822 [TBL] [Abstract][Full Text] [Related]
25. The effects of intermittent and continuous stimulation of microvessels in the cheek pouch of hamsters with histamine and bradykinin on the development of venular leaky sites. Svensjö E; Joyner WL Microcirc Endothelium Lymphatics; 1984 Aug; 1(4):381-96. PubMed ID: 6546151 [TBL] [Abstract][Full Text] [Related]
26. Nitric oxide pathway-mediated relaxant effect of bradykinin in the guinea-pig isolated trachea. Schlemper V; Calixto JB Br J Pharmacol; 1994 Jan; 111(1):83-8. PubMed ID: 8012728 [TBL] [Abstract][Full Text] [Related]
27. Histamine-induced biphasic macromolecular leakage in the microcirculation of the conscious hamster: evidence for a delayed nitric oxide-dependent leakage. Gimeno G; Carpentier PH; Desquand-Billiald S; Hanf R; Finet M Br J Pharmacol; 1998 Mar; 123(5):943-51. PubMed ID: 9535024 [TBL] [Abstract][Full Text] [Related]
28. Attenuation of human nasal airway responses to bradykinin and histamine by inhibitors of nitric oxide synthase. Dear JW; Ghali S; Foreman JC Br J Pharmacol; 1996 Jul; 118(5):1177-82. PubMed ID: 8818341 [TBL] [Abstract][Full Text] [Related]
29. Protein kinase C modulates microvascular permeability through nitric oxide synthase. Ramírez MM; Kim DD; Durán WN Am J Physiol; 1996 Oct; 271(4 Pt 2):H1702-5. PubMed ID: 8897966 [TBL] [Abstract][Full Text] [Related]
30. Role of nitric oxide in disruption of the blood-brain barrier during acute hypertension. Mayhan WG Brain Res; 1995 Jul; 686(1):99-103. PubMed ID: 7583277 [TBL] [Abstract][Full Text] [Related]
31. Reproducibility of microvascular permeability responses to successive topical applications of bradykinin in the hamster cheek pouch. Gawlowski DM; Ritter AB; Durán WN Microvasc Res; 1982 Nov; 24(3):354-63. PubMed ID: 7154989 [No Abstract] [Full Text] [Related]
32. Inhibition in the rat of nitric oxide synthesis in vivo does not attenuate the hypotensive action of acetylcholine, ATP or bradykinin. O'Shaughnessy KM; Newman CM; Warren JB Exp Physiol; 1992 Mar; 77(2):285-92. PubMed ID: 1581056 [TBL] [Abstract][Full Text] [Related]
33. Effect of L-arginine on reactivity of hamster cheek pouch arterioles during diabetes mellitus. Mayhan WG; Patel KP; Sharpe GM Int J Microcirc Clin Exp; 1997; 17(3):107-12. PubMed ID: 9272460 [TBL] [Abstract][Full Text] [Related]
34. Differential effects of nitric oxide synthase inhibitors on endothelium-dependent and nitrergic nerve-mediated vasodilatation in the bovine ciliary artery. Overend J; Martin W Br J Pharmacol; 2007 Feb; 150(4):488-93. PubMed ID: 17211453 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of nitric oxide synthesis increases venular permeability and alters endothelial actin cytoskeleton. Baldwin AL; Thurston G; al Naemi H Am J Physiol; 1998 May; 274(5):H1776-84. PubMed ID: 9612390 [TBL] [Abstract][Full Text] [Related]
36. Effects of oral administration of purified micronized flavonoid fraction on increased microvascular permeability induced by various agents and on ischemia/reperfusion in the hamster cheek pouch. Bouskela E; Donyo KA Angiology; 1997 May; 48(5):391-9. PubMed ID: 9158383 [TBL] [Abstract][Full Text] [Related]
37. Inhibitory effect of the Ruscus extract and of the flavonoid hesperidine methylchalcone on increased microvascular permeability induced by various agents in the hamster cheek pouch. Bouskela E; Cyrino FZ; Marcelon G J Cardiovasc Pharmacol; 1993 Aug; 22(2):225-30. PubMed ID: 7692162 [TBL] [Abstract][Full Text] [Related]
38. Characterization of the L-arginine:nitric oxide pathway in human platelets. Radomski MW; Palmer RM; Moncada S Br J Pharmacol; 1990 Oct; 101(2):325-8. PubMed ID: 1701676 [TBL] [Abstract][Full Text] [Related]
39. Release of multiple endothelium-derived relaxing factors from porcine coronary arteries. Myers PR; Guerra R; Harrison DG J Cardiovasc Pharmacol; 1992 Sep; 20(3):392-400. PubMed ID: 1279283 [TBL] [Abstract][Full Text] [Related]
40. Bradykinin- and substance P-induced edema formation in the hamster cheek pouch is tyrosine kinase dependent. Rubinstein I J Appl Physiol (1985); 2007 Jul; 103(1):184-9. PubMed ID: 17431087 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]