BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15267237)

  • 1. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase.
    Cavalli A; Bottegoni G; Raco C; De Vivo M; Recanatini M
    J Med Chem; 2004 Jul; 47(16):3991-9. PubMed ID: 15267237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of acetylcholinesterase peripheral anionic site ligands through computational refinement of a directed library.
    Dickerson TJ; Beuscher AE; Rogers CJ; Hixon MS; Yamamoto N; Xu Y; Olson AJ; Janda KD
    Biochemistry; 2005 Nov; 44(45):14845-53. PubMed ID: 16274232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding conformation prediction between human acetylcholinesterase and cytochrome c using molecular modeling methods.
    Kim S; Lee Y; Lazar P; Son M; Baek A; Thangapandian S; Jeong NY; Yoo YH; Lee KW
    J Mol Graph Model; 2011 Aug; 29(8):996-1005. PubMed ID: 21570330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects.
    Khan MT
    N Biotechnol; 2009 Jun; 25(5):331-46. PubMed ID: 19491049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T; Elcock AH
    J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adhesion function on acetylcholinesterase is located at the peripheral anionic site.
    Johnson G; Moore SW
    Biochem Biophys Res Commun; 1999 May; 258(3):758-62. PubMed ID: 10329459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A docking score function for estimating ligand-protein interactions: application to acetylcholinesterase inhibition.
    Guo J; Hurley MM; Wright JB; Lushington GH
    J Med Chem; 2004 Oct; 47(22):5492-500. PubMed ID: 15481986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor flexibility in de novo ligand design and docking.
    Alberts IL; Todorov NP; Dean PM
    J Med Chem; 2005 Oct; 48(21):6585-96. PubMed ID: 16220975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EADock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization.
    Grosdidier A; Zoete V; Michielin O
    Proteins; 2007 Jun; 67(4):1010-25. PubMed ID: 17380512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamic investigation of the interaction of supported affinity ligands with monoclonal antibodies.
    Zamolo L; Busini V; Moiani D; Moscatelli D; Cavallotti C
    Biotechnol Prog; 2008; 24(3):527-39. PubMed ID: 18452341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the hERG potassium channel in a phospholipid bilayer: Molecular dynamics and drug docking studies.
    Masetti M; Cavalli A; Recanatini M
    J Comput Chem; 2008 Apr; 29(5):795-808. PubMed ID: 17926340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of acetylcholinesterase with the G4 domain of the laminin alpha1-chain.
    Johnson G; Swart C; Moore SW
    Biochem J; 2008 May; 411(3):507-14. PubMed ID: 18215127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions.
    Lu SY; Jiang YJ; Lv J; Wu TX; Yu QS; Zhu WL
    J Mol Graph Model; 2010 Jun; 28(8):766-74. PubMed ID: 20227312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling and molecular dynamics simulation of the human A2B adenosine receptor. The study of the possible binding modes of the A2B receptor antagonists.
    Ivanov AA; Baskin II; Palyulin VA; Piccagli L; Baraldi PG; Zefirov NS
    J Med Chem; 2005 Nov; 48(22):6813-20. PubMed ID: 16250640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.
    Rydberg EH; Brumshtein B; Greenblatt HM; Wong DM; Shaya D; Williams LD; Carlier PR; Pang YP; Silman I; Sussman JL
    J Med Chem; 2006 Sep; 49(18):5491-500. PubMed ID: 16942022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible relaxation of rigid-body docking solutions.
    Król M; Tournier AL; Bates PA
    Proteins; 2007 Jul; 68(1):159-69. PubMed ID: 17397060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico analyses of substrate interactions with human serum paraoxonase 1.
    Hu X; Jiang X; Lenz DE; Cerasoli DM; Wallqvist A
    Proteins; 2009 May; 75(2):486-98. PubMed ID: 18951406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and dynamic roles of permanent water molecules in ligand molecular recognition by chicken liver bile acid binding protein.
    Ricchiuto P; Rocco AG; Gianazza E; Corrada D; Beringhelli T; Eberini I
    J Mol Recognit; 2008; 21(5):348-54. PubMed ID: 18654997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.