These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 15267269)
1. Low temperature pressure broadening of NH3 by D2. Willey DR; Timlin RE; Ruggiero CD; Sulai IA J Chem Phys; 2004 Jan; 120(1):129-32. PubMed ID: 15267269 [TBL] [Abstract][Full Text] [Related]
2. Low temperature pressure broadening of OCS by He. Ross KA; Willey DR J Chem Phys; 2005 May; 122(20):204308. PubMed ID: 15945725 [TBL] [Abstract][Full Text] [Related]
3. Helium induced pressure broadening and shifting of HCN hyperfine transitions between 1.3 and 20 K. Ronningen TJ; De Lucia FC J Chem Phys; 2005 May; 122(18):184319. PubMed ID: 15918716 [TBL] [Abstract][Full Text] [Related]
4. Stabilized Tunable Diode Laser Measurements of the P(2) Line in the (13)CO Fundamental Band Broadened by Helium at Temperatures between 11.5 and 298.6 K. Mantz AW; Henry A; Valentin A J Mol Spectrosc; 2001 May; 207(1):113-119. PubMed ID: 11336529 [TBL] [Abstract][Full Text] [Related]
5. Collisional quenching of NO A 2Sigma+(v' = 0) between 125 and 294 K. Settersten TB; Patterson BD; Carter CD J Chem Phys; 2009 May; 130(20):204302. PubMed ID: 19485444 [TBL] [Abstract][Full Text] [Related]
6. [Study on temperature dependence of ultraviolet absorption cross sections of ammonia]. Zhou J; Long ZY; Zhao C Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):982-5. PubMed ID: 19626886 [TBL] [Abstract][Full Text] [Related]
7. N(2)-Broadening for Methyl Chloride at Low Temperature by Diode-Laser Spectroscopy. Bouanich JP; Blanquet G; Populaire JC; Walrand J J Mol Spectrosc; 2001 Jul; 208(1):72-78. PubMed ID: 11437554 [TBL] [Abstract][Full Text] [Related]
8. H(2)-Broadening Coefficients in the nu(4) Band of NH(3). Bouanich JP; Aroui H; Nouri S; Picard-Bersellini A J Mol Spectrosc; 2001 Mar; 206(1):104-110. PubMed ID: 11281689 [TBL] [Abstract][Full Text] [Related]
9. Rotational spectra of the van der Waals complexes of molecular hydrogen and OCS. Yu Z; Higgins KJ; Klemperer W; McCarthy MC; Thaddeus P; Liao K; Jäger W J Chem Phys; 2007 Aug; 127(5):054305. PubMed ID: 17688338 [TBL] [Abstract][Full Text] [Related]
10. High-resolution absorption studies of the A(1)A2-X(1)A1 2(0)(2)4(0)(1) band of formaldehyde. Crow MB; Gilchrist A; Hancock G; Peverall R; Richmond G; Ritchie GA; Taylor SR J Phys Chem A; 2009 Jun; 113(24):6689-96. PubMed ID: 19459699 [TBL] [Abstract][Full Text] [Related]
11. Low-temperature rotational relaxation of CO in self-collisions and in collisions with Ne and He. Amaral GA; Aoiz FJ; Bañares L; Barr J; Herrero VJ; Martínez-Haya B; Menéndez M; Pino GA; Tanarro I; Torres I; Verdasco JE J Phys Chem A; 2005 Oct; 109(42):9402-13. PubMed ID: 16866388 [TBL] [Abstract][Full Text] [Related]
13. Absorption cross sections of formaldehyde at wavelengths from 300 to 340 nm at 294 and 245 K. Smith CA; Pope FD; Cronin B; Parkes CB; Orr-Ewing AJ J Phys Chem A; 2006 Oct; 110(41):11645-53. PubMed ID: 17034158 [TBL] [Abstract][Full Text] [Related]
14. Photoabsorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 110-144 nm. Wu YJ; Lu HC; Chen HK; Cheng BM; Lee YP; Lee LC J Chem Phys; 2007 Oct; 127(15):154311. PubMed ID: 17949153 [TBL] [Abstract][Full Text] [Related]
15. Rotationally resolved absorption cross sections of formaldehyde in the 28100-28500 cm(-1) (351-356 nm) spectral region: implications for in situ LIF measurements. Co DT; Hanisco TF; Anderson JG; Keutsch FN J Phys Chem A; 2005 Dec; 109(47):10675-82. PubMed ID: 16863116 [TBL] [Abstract][Full Text] [Related]
16. Experimental and theoretical study of line mixing in NH3 spectra. II. Effect of the perturber in infrared parallel bands. Hadded S; Thibault F; Flaud PM; Aroui H; Hartmann JM J Chem Phys; 2004 Jan; 120(1):217-23. PubMed ID: 15267280 [TBL] [Abstract][Full Text] [Related]
17. Oxygen Broadening of Acetylene Lines in the nu5 Band at Low Temperature. Bouanich JP; Blanquet G; Walrand J J Mol Spectrosc; 1999 Apr; 194(2):269-277. PubMed ID: 10079166 [TBL] [Abstract][Full Text] [Related]
18. Influence of reagent rotation on (H-, D2) and (D-, H2) collisions: a quantum mechanical study. Giri K; Sathyamurthy N J Phys Chem A; 2006 Dec; 110(51):13843-9. PubMed ID: 17181342 [TBL] [Abstract][Full Text] [Related]
19. Quantum scattering of SiS with H2: potential energy surface and rate coefficients at low temperature. Lique F; Kłos J J Chem Phys; 2008 Jan; 128(3):034306. PubMed ID: 18205497 [TBL] [Abstract][Full Text] [Related]
20. Steric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Pi(1/2)) with He. de Lange MJ; Stolte S; Taatjes CA; Kłos J; Groenenboom GC; van der Avoird A J Chem Phys; 2004 Dec; 121(23):11691-701. PubMed ID: 15634135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]