These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 15267320)

  • 1. On the calculation of single-particle time correlation functions from Bose-Einstein centroid dynamics.
    Moffatt P; Blinov N; Roy PN
    J Chem Phys; 2004 Mar; 120(10):4614-8. PubMed ID: 15267320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear quantum time correlation functions from centroid molecular dynamics and the maximum entropy method.
    Paesani F; Voth GA
    J Chem Phys; 2008 Nov; 129(19):194113. PubMed ID: 19026051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion of inversion symmetry in centroid molecular dynamics: a possible avenue to recover quantum coherence.
    Huh Y; Roy PN
    J Chem Phys; 2006 Oct; 125(16):164103. PubMed ID: 17092059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical reaction rates from ring polymer molecular dynamics.
    Craig IR; Manolopoulos DE
    J Chem Phys; 2005 Feb; 122(8):84106. PubMed ID: 15836019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the short-time limit of ring polymer molecular dynamics.
    Braams BJ; Manolopoulos DE
    J Chem Phys; 2006 Sep; 125(12):124105. PubMed ID: 17014164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum corrections to classical time-correlation functions: hydrogen bonding and anharmonic floppy modes.
    Ramírez R; López-Ciudad T; Kumar P P; Marx D
    J Chem Phys; 2004 Sep; 121(9):3973-83. PubMed ID: 15332943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective potential analytic continuation approach for real time quantum correlation functions involving nonlinear operators.
    Horikoshi A; Kinugawa K
    J Chem Phys; 2005 May; 122(17):174104. PubMed ID: 15910020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals.
    Pérez A; Tuckerman ME; Müser MH
    J Chem Phys; 2009 May; 130(18):184105. PubMed ID: 19449906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of quantum correlation functions from classical data: Anharmonic models.
    Kim H; Rossky PJ
    J Chem Phys; 2006 Aug; 125(7):074107. PubMed ID: 16942322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Centroid molecular dynamics: comparison with exact results for model systems.
    Polyakov EA; Lyubartsev AP; Vorontsov-Velyaminov PN
    J Chem Phys; 2010 Nov; 133(19):194103. PubMed ID: 21090850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New conditions for validity of the centroid molecular dynamics and ring polymer molecular dynamics.
    Yoshimori A
    J Chem Phys; 2008 Jun; 128(23):234105. PubMed ID: 18570489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of nonlinear quantum time correlation functions within the centroid dynamics formulation.
    Krishna V; Voth GA
    J Phys Chem B; 2006 Sep; 110(38):18953-7. PubMed ID: 16986889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum mechanical correlation functions, maximum entropy analytic continuation, and ring polymer molecular dynamics.
    Habershon S; Braams BJ; Manolopoulos DE
    J Chem Phys; 2007 Nov; 127(17):174108. PubMed ID: 17994808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal 'social' commitments.
    Clark KB
    Biosystems; 2010 Mar; 99(3):167-78. PubMed ID: 19883726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics.
    Craig IR; Manolopoulos DE
    J Chem Phys; 2004 Aug; 121(8):3368-73. PubMed ID: 15303899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct ab initio dynamics study on the rate constants and kinetics isotope effects of CH(3)O+H-->CH(2)O+H(2) reaction.
    Li QS; Zhang Y; Zhang S
    J Chem Phys; 2004 Nov; 121(19):9474-80. PubMed ID: 15538868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions.
    Liu J; Miller WH
    J Chem Phys; 2006 Dec; 125(22):224104. PubMed ID: 17176131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear quantum effects in electronically adiabatic quantum time correlation functions: application to the absorption spectrum of a hydrated electron.
    Turi L; Hantal G; Rossky PJ; Borgis D
    J Chem Phys; 2009 Jul; 131(2):024119. PubMed ID: 19603982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Path-integral centroid dynamics for general initial conditions: a nonequilibrium projection operator formulation.
    Jang S
    J Chem Phys; 2006 Feb; 124(6):64107. PubMed ID: 16483196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accurate and simple quantum model for liquid water.
    Paesani F; Zhang W; Case DA; Cheatham TE; Voth GA
    J Chem Phys; 2006 Nov; 125(18):184507. PubMed ID: 17115765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.