These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15267447)

  • 1. Basis set study of classical rotor lattice dynamics.
    Witkoskie JB; Wu J; Cao J
    J Chem Phys; 2004 Mar; 120(12):5695-708. PubMed ID: 15267447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An idealized model for nonequilibrium dynamics in molecular systems.
    Vogt M; Hernandez R
    J Chem Phys; 2005 Oct; 123(14):144109. PubMed ID: 16238376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Path-integral centroid dynamics for general initial conditions: a nonequilibrium projection operator formulation.
    Jang S
    J Chem Phys; 2006 Feb; 124(6):64107. PubMed ID: 16483196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the projection operator formalism to non-hamiltonian dynamics.
    Xing J; Kim KS
    J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics.
    Izvekov S
    J Chem Phys; 2019 Sep; 151(10):104109. PubMed ID: 31521077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of swelling/contracting hard spheres surmised by an irreversible Langevin equation.
    Popov AV; Melvin J; Hernandez R
    J Phys Chem A; 2006 Feb; 110(4):1635-44. PubMed ID: 16435826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Markovian theory of open systems in classical limit.
    Neufeld AA
    J Chem Phys; 2004 Aug; 121(6):2542-52. PubMed ID: 15281851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems.
    Chen JC; Kim AS
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex methyl group and hydrogen-bonded proton motions in terms of the Arrhenius and Schrödinger equations.
    Latanowicz L
    Solid State Nucl Magn Reson; 2008; 34(1-2):93-104. PubMed ID: 18023155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation.
    Zhang ML; Ka BJ; Geva E
    J Chem Phys; 2006 Jul; 125(4):44106. PubMed ID: 16942133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a relaxation-inducing cluster expansion formalism for treating strong relaxation and correlation effects.
    Jana D; Mukherjee D
    J Chem Phys; 2005 Jun; 122(23):234101. PubMed ID: 16008424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale and space localization in the Kuramoto-Sivashinsky equation.
    Wittenberg RW; Holmes P
    Chaos; 1999 Jun; 9(2):452-465. PubMed ID: 12779842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wigner function approach to the quantum Brownian motion of a particle in a potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-driven irreversible generalized Langevin equation can capture the nonequilibrium dynamics of two dissipated coupled oscillators.
    Popov AV; Hernandez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032145. PubMed ID: 24125251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Schrödinger equation to study the tunnelling dynamics of proton transfer in the hydrogen bond of 2,5-dinitrobenzoic acid: proton T1 T1rho, and deuteron T1 relaxation methods.
    Latanowicz L; Medycki W
    J Phys Chem A; 2007 Feb; 111(7):1351-7. PubMed ID: 17263515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating the convergence of path integral dynamics with a generalized Langevin equation.
    Ceriotti M; Manolopoulos DE; Parrinello M
    J Chem Phys; 2011 Feb; 134(8):084104. PubMed ID: 21361524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of the generalized Langevin equation in nonstationary environments.
    Kawai S; Komatsuzaki T
    J Chem Phys; 2011 Mar; 134(11):114523. PubMed ID: 21428648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct calculation of (1)H(2)O T(1) NMRD profiles and EPR lineshapes for the electron spin quantum numbers S = 1, 3/2, 2, 5/2, 3, 7/2, based on the stochastic Liouville equation combined with Brownian dynamics simulation.
    Aman K; Westlund PO
    Phys Chem Chem Phys; 2007 Feb; 9(6):691-700. PubMed ID: 17268680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.