BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1526745)

  • 1. Properties of staircase procedures for estimating thresholds in automated perimetry.
    Johnson CA; Chauhan BC; Shapiro LR
    Invest Ophthalmol Vis Sci; 1992 Sep; 33(10):2966-74. PubMed ID: 1526745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining perimetric suprathreshold and threshold procedures to reduce measurement variability in areas of visual field loss.
    McKendrick AM; Turpin A
    Optom Vis Sci; 2005 Jan; 82(1):43-51. PubMed ID: 15630403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations for FASTPAC and the standard 4-2 dB full-threshold strategy of the Humphrey Field Analyzer.
    Glass E; Schaumberger M; Lachenmayr BJ
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1847-54. PubMed ID: 7635658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating thresholds in conventional and high-pass resolution perimetry using computer simulation.
    Chauhan BC; House PH
    J Glaucoma; 1994; 3(2):132-9. PubMed ID: 19920566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation.
    Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):322-31. PubMed ID: 11818373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages of terminating Zippy Estimation by Sequential Testing (ZEST) with dynamic criteria for white-on-white perimetry.
    McKendrick AM; Turpin A
    Optom Vis Sci; 2005 Nov; 82(11):981-7. PubMed ID: 16317375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term fluctuation as an estimate of variability in visual field data.
    Casson EJ; Shapiro LR; Johnson CA
    Invest Ophthalmol Vis Sci; 1990 Nov; 31(11):2459-63. PubMed ID: 2243009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes.
    Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):709-15. PubMed ID: 11867588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retesting visual fields: utilizing prior information to decrease test-retest variability in glaucoma.
    Turpin A; Jankovic D; McKendrick AM
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1627-34. PubMed ID: 17389493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the sensitivity to variability relationship in perimetry.
    Gardiner SK; Demirel S; Johnson CA
    Vision Res; 2006 May; 46(11):1732-45. PubMed ID: 16412491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The properties of perimetric thresholds in normal and glaucomatous eyes.
    Weber J; Rau S
    Ger J Ophthalmol; 1992; 1(2):79-85. PubMed ID: 1477630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement error of visual field tests in glaucoma.
    Spry PG; Johnson CA; McKendrick AM; Turpin A
    Br J Ophthalmol; 2003 Jan; 87(1):107-12. PubMed ID: 12488273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry.
    Wall M; Woodward KR; Doyle CK; Artes PH
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):974-9. PubMed ID: 18952921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy.
    Wabbels BK; Wilscher S
    Acta Ophthalmol Scand; 2005 Dec; 83(6):664-9. PubMed ID: 16396642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical alternative for reducing the time needed to perform automated threshold perimetry.
    Fingeret M
    J Am Optom Assoc; 1995 Nov; 66(11):699-705. PubMed ID: 8576535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Variability of sensitivity thresholds in short-wavelength automated perimetry (SWAP) in the central vision field].
    Polo Llorens V; Larrosa Poves JM; Pinilla Lozano I; Pablo Júlvez L; Rojo Aragües A; Cuevas Andrés R; Ruiz Moreno O; Honrubia López FM
    Arch Soc Esp Oftalmol; 2000 Feb; 75(2):85-90. PubMed ID: 11151125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry.
    Springer C; Bültmann S; Völcker HE; Rohrschneider K
    Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation mechanisms, eccentricity profiles, and clinical implementation of red-on-white perimetry.
    Zele AJ; Dang TM; O'Loughlin RK; Guymer RH; Harper A; Vingrys AJ
    Optom Vis Sci; 2008 May; 85(5):309-17. PubMed ID: 18451735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma.
    Artes PH; Hutchison DM; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2451-7. PubMed ID: 15980235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation.
    Turpin A; McKendrick AM; Johnson CA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4787-95. PubMed ID: 14578400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.