BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15267472)

  • 1. First-principle molecular dynamics with ultrasoft pseudopotentials: parallel implementation and application to extended bioinorganic systems.
    Giannozzi P; De Angelis F; Car R
    J Chem Phys; 2004 Apr; 120(13):5903-15. PubMed ID: 15267472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground- and excited-state properties of DNA base molecules from plane-wave calculations using ultrasoft pseudopotentials.
    Preuss M; Schmidt WG; Seino K; Furthmüller J; Bechstedt F
    J Comput Chem; 2004 Jan; 25(1):112-22. PubMed ID: 14634999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and efficiency of atomic basis set methods versus plane wave calculations with ultrasoft pseudopotentials for DNA base molecules.
    Pulay P; Saebo S; Malagoli M; Baker J
    J Comput Chem; 2005 Apr; 26(6):599-605. PubMed ID: 15739195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.
    Vadali RV; Shi Y; Kumar S; Kale LV; Tuckerman ME; Martyna GJ
    J Comput Chem; 2004 Dec; 25(16):2006-22. PubMed ID: 15473008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models.
    Oda A; Yamaotsu N; Hirono S
    J Comput Chem; 2005 Jun; 26(8):818-26. PubMed ID: 15812779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution.
    de Groot MT; Koper MT
    Phys Chem Chem Phys; 2008 Feb; 10(7):1023-31. PubMed ID: 18259642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasoft pseudopotentials in time-dependent density-functional theory.
    Walker B; Gebauer R
    J Chem Phys; 2007 Oct; 127(16):164106. PubMed ID: 17979318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A QM-MM interface between CHARMM and TURBOMOLE: implementation and application to systems in bulk phase and biologically active systems.
    Loferer MJ; Loeffler HH; Liedl KR
    J Comput Chem; 2003 Jul; 24(10):1240-9. PubMed ID: 12820132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin and charge distribution in iron porphyrin models: a coupled cluster and density-functional study.
    Johansson MP; Sundholm D
    J Chem Phys; 2004 Feb; 120(7):3229-36. PubMed ID: 15268476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge transfer enhances two-photon absorption in transition metal porphyrins.
    Humphrey JL; Kuciauskas D
    J Am Chem Soc; 2006 Mar; 128(12):3902-3. PubMed ID: 16551085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure and peroxidase activity of myoglobin reconstituted with iron porphycene.
    Hayashi T; Murata D; Makino M; Sugimoto H; Matsuo T; Sato H; Shiro Y; Hisaeda Y
    Inorg Chem; 2006 Dec; 45(26):10530-6. PubMed ID: 17173408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasoft spin-dependent pseudopotentials.
    Cocula V; Pickard CJ; Carter EA
    J Chem Phys; 2005 Dec; 123(21):214101. PubMed ID: 16356033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metal complexes of N-confused porphyrin as heme model compounds.
    Harvey JD; Ziegler CJ
    J Inorg Biochem; 2006 Apr; 100(4):869-80. PubMed ID: 16510190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray absorption spectra of water within a plane-wave Car-Parrinello molecular dynamics framework.
    Cavalleri M; Odelius M; Nilsson A; Pettersson LG
    J Chem Phys; 2004 Nov; 121(20):10065-75. PubMed ID: 15549881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasoft pseudopotentials for lanthanide solvation complexes: core or valence character of the 4f electrons.
    Pollet R; Clavaguéra C; Dognon JP
    J Chem Phys; 2006 Apr; 124(16):164103. PubMed ID: 16674125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNDOL: A fast and reliable method for the calculation of electronic properties of very large systems. Applications to retinal binding pocket in rhodopsin and gas phase porphine.
    Montero-Cabrera LA; Röhrig U; Padrón-Garcia JA; Crespo-Otero R; Montero-Alejo AL; Garcia de la Vega JM; Chergui M; Rothlisberger U
    J Chem Phys; 2007 Oct; 127(14):145102. PubMed ID: 17935446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of parameter sets for semi-empirical MO calculations of transition metal systems: iron parameters for iron-sulfur proteins.
    McNamara JP; Sundararajan M; Hillier IH
    J Mol Graph Model; 2005 Oct; 24(2):128-37. PubMed ID: 16122959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principle computation of zero-field splittings: application to a high valent Fe(IV)-oxo model of nonheme iron proteins.
    Aquino F; Rodriguez JH
    J Chem Phys; 2005 Nov; 123(20):204902. PubMed ID: 16351312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of the molecular shape of iron corrphycene in a protein pocket.
    Neya S; Imai K; Hiramatsu Y; Kitagawa T; Hoshino T; Hata M; Funasaki N
    Inorg Chem; 2006 May; 45(10):4238-42. PubMed ID: 16676986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonadiabatic couplings from time-dependent density functional theory. II. Successes and challenges of the pseudopotential approximation.
    Hu C; Hirai H; Sugino O
    J Chem Phys; 2008 Apr; 128(15):154111. PubMed ID: 18433194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.