These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15267530)

  • 1. Improving the accuracy of interpolated potential energy surfaces by using an analytical zeroth-order potential function.
    Kawano A; Guo Y; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Apr; 120(14):6414-22. PubMed ID: 15267530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points.
    Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M
    J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A local interpolation scheme using no derivatives in potential sampling: application to O(1D) + H2 system.
    Ishida T; Schatz GC
    J Comput Chem; 2003 Jul; 24(9):1077-86. PubMed ID: 12759907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpolating moving least-squares methods for fitting potential-energy surfaces: further improvement of efficiency via cutoff strategies.
    Kawano A; Tokmakov IV; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2006 Feb; 124(5):054105. PubMed ID: 16468849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpolating moving least-squares methods for fitting potential energy surfaces: Improving efficiency via local approximants.
    Guo Y; Tokmakov I; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2007 Dec; 127(21):214106. PubMed ID: 18067348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving least-squares enhanced Shepard interpolation for the fast marching and string methods.
    Burger SK; Liu Y; Sarkar U; Ayers PW
    J Chem Phys; 2009 Jan; 130(2):024103. PubMed ID: 19154015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpolating moving least-squares methods for fitting potential energy surfaces: Analysis of an application to a six-dimensional system.
    Maisuradze GG; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Dec; 121(21):10329-38. PubMed ID: 15549910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpolated potential energy surfaces: How accurate do the second derivatives have to be?
    Crittenden DL; Jordan MJ
    J Chem Phys; 2005 Jan; 122(4):44102. PubMed ID: 15740230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions.
    Dawes R; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2008 Feb; 128(8):084107. PubMed ID: 18315033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpolating moving least-squares methods for fitting potential energy surfaces: applications to classical dynamics calculations.
    Guo Y; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Sep; 121(11):5091-7. PubMed ID: 15352800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hierarchy of potential energy surfaces constructed from energies and energy derivatives calculated on grids.
    Matito E; Toffoli D; Christiansen O
    J Chem Phys; 2009 Apr; 130(13):134104. PubMed ID: 19355714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks.
    Pukrittayakamee A; Malshe M; Hagan M; Raff LM; Narulkar R; Bukkapatnum S; Komanduri R
    J Chem Phys; 2009 Apr; 130(13):134101. PubMed ID: 19355711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction.
    Guo Y; Harding LB; Wagner AF; Minkoff M; Thompson DL
    J Chem Phys; 2007 Mar; 126(10):104105. PubMed ID: 17362059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks.
    Raff LM; Malshe M; Hagan M; Doughan DI; Rockley MG; Komanduri R
    J Chem Phys; 2005 Feb; 122(8):84104. PubMed ID: 15836017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces.
    Evenhuis CR; Manthe U
    J Chem Phys; 2008 Jul; 129(2):024104. PubMed ID: 18624513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-based multiconfiguration Shepard interpolation for generating potential energy surfaces for polyatomic reactions.
    Tishchenko O; Truhlar DG
    J Chem Phys; 2010 Feb; 132(8):084109. PubMed ID: 20192292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locally optimized coordinates in modified Shepard interpolation.
    Evenhuis CR; Collins MA
    J Phys Chem A; 2009 Apr; 113(16):3979-87. PubMed ID: 19284774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Exact" surface free energies of iron surfaces using a modified embedded atom method potential and lambda integration.
    Grochola G; Russo SP; Yarovsky I; Snook IK
    J Chem Phys; 2004 Feb; 120(7):3425-30. PubMed ID: 15268499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111).
    Crespos C; Collins MA; Pijper E; Kroes GJ
    J Chem Phys; 2004 Feb; 120(5):2392-404. PubMed ID: 15268379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency considerations in the construction of interpolated potential energy surfaces for the calculation of quantum observables by diffusion Monte Carlo.
    Crittenden DL; Thompson KC; Chebib M; Jordan MJ
    J Chem Phys; 2004 Nov; 121(20):9844-54. PubMed ID: 15549857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.