These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 15267604)

  • 1. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM).
    Iozzi MF; Mennucci B; Tomasi J; Cammi R
    J Chem Phys; 2004 Apr; 120(15):7029-40. PubMed ID: 15267604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-consistent quantum mechanical model for the description of excitation energy transfers in molecules at interfaces.
    Curutchet C; Cammi R; Mennucci B; Corni S
    J Chem Phys; 2006 Aug; 125(5):054710. PubMed ID: 16942244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation models.
    Kongsted J; Mennucci B
    J Phys Chem A; 2007 Oct; 111(39):9890-900. PubMed ID: 17845016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.
    Cammi R
    J Chem Phys; 2009 Oct; 131(16):164104. PubMed ID: 19894924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanical methods applied to excitation energy transfer: a comparative analysis on excitation energies and electronic couplings.
    Muñoz-Losa A; Curutchet C; Fdez Galván I; Mennucci B
    J Chem Phys; 2008 Jul; 129(3):034104. PubMed ID: 18647013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A variational formulation of the polarizable continuum model.
    Lipparini F; Scalmani G; Mennucci B; Cancès E; Caricato M; Frisch MJ
    J Chem Phys; 2010 Jul; 133(1):014106. PubMed ID: 20614958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and accurate solvation energy calculation from polarizable continuum models.
    Lin ST; Hsieh CM
    J Chem Phys; 2006 Sep; 125(12):124103. PubMed ID: 17014162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory.
    Caricato M; Mennucci B; Tomasi J; Ingrosso F; Cammi R; Corni S; Scalmani G
    J Chem Phys; 2006 Mar; 124(12):124520. PubMed ID: 16599710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures and properties of electronically excited chromophores in solution from the polarizable continuum model coupled to the time-dependent density functional theory.
    Mennucci B; Cappelli C; Guido CA; Cammi R; Tomasi J
    J Phys Chem A; 2009 Apr; 113(13):3009-20. PubMed ID: 19226132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous surface charge polarizable continuum models of solvation. I. General formalism.
    Scalmani G; Frisch MJ
    J Chem Phys; 2010 Mar; 132(11):114110. PubMed ID: 20331284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building cavities in a fluid of spherical or rod-like particles: a contribution to the solvation free energy in isotropic and anisotropic polarizable continuum model.
    Benzi C; Cossi M; Improta R; Barone V
    J Comput Chem; 2005 Aug; 26(11):1096-105. PubMed ID: 15929089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: theory of the solvent effect on the electronic excitation of molecules in solution.
    Cammi R; Fukuda R; Ehara M; Nakatsuji H
    J Chem Phys; 2010 Jul; 133(2):024104. PubMed ID: 20632745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution.
    Improta R; Barone V; Scalmani G; Frisch MJ
    J Chem Phys; 2006 Aug; 125(5):054103. PubMed ID: 16942199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent effects on global reactivity properties for neutral and charged systems using the sequential Monte Carlo quantum mechanics model.
    Jaramillo P; Pérez P; Fuentealba P; Canuto S; Coutinho K
    J Phys Chem B; 2009 Apr; 113(13):4314-22. PubMed ID: 19320524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvation model induced structural changes in peptides. A quantum chemical study on Ramachandran surfaces and conformers of alanine diamide using the polarizable continuum model.
    Hudáky I; Hudáky P; Perczel A
    J Comput Chem; 2004 Sep; 25(12):1522-31. PubMed ID: 15224396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How solvent controls electronic energy transfer and light harvesting: toward a quantum-mechanical description of reaction field and screening effects.
    Curutchet C; Scholes GD; Mennucci B; Cammi R
    J Phys Chem B; 2007 Nov; 111(46):13253-65. PubMed ID: 17973520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: new energy gradients and molecular surface tessellation.
    Li H; Jensen JH
    J Comput Chem; 2004 Sep; 25(12):1449-62. PubMed ID: 15224389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-mechanical studies of NMR properties of solutes in liquid crystals: a new strategy to determine orientational order parameters.
    Pavanello M; Mennucci B; Ferrarini A
    J Chem Phys; 2005 Feb; 122(6):064906. PubMed ID: 15740407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.