BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15267744)

  • 1. Simplified crossover droplet model for adsorption of pure fluids in slit pores.
    Kiselev SB; Ely JF
    J Chem Phys; 2004 May; 120(17):8241-52. PubMed ID: 15267744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption from alkane+perfluoroalkane mixtures at fluorophobic and fluorophilic surfaces. II. Crossover from critical adsorption to complete wetting.
    Bowers J; Zarbakhsh A; Querol A; Christenson HK; McLure IA; Cubitt R
    J Chem Phys; 2004 Nov; 121(18):9058-65. PubMed ID: 15527372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; HoƂyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of 1-site and 5-site models of methane on its adsorption on graphite and in graphitic slit pores.
    Do DD; Do HD
    J Phys Chem B; 2005 Oct; 109(41):19288-95. PubMed ID: 16853491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the existence of negative excess isotherms for argon adsorption on graphite surfaces and in graphitic pores under supercritical conditions at pressures up to 10,000 atm.
    Do DD; Do HD; Fan C; Nicholson D
    Langmuir; 2010 Apr; 26(7):4796-806. PubMed ID: 20205401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K.
    Kowalczyk P; Tanaka H; Kaneko K; Terzyk AP; Do DD
    Langmuir; 2005 Jun; 21(12):5639-46. PubMed ID: 15924500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of self-avoiding tethered membranes: A Monte Carlo simulation study.
    Popova H; Milchev A
    J Chem Phys; 2008 Dec; 129(21):215103. PubMed ID: 19063583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas adsorption in active carbons and the slit-pore model 1: Pure gas adsorption.
    Sweatman MB; Quirke N
    J Phys Chem B; 2005 May; 109(20):10381-8. PubMed ID: 16852258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model.
    Monson PA
    Langmuir; 2008 Nov; 24(21):12295-302. PubMed ID: 18834164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas adsorption in active carbons and the slit-pore model 2: Mixture adsorption prediction with DFT and IAST.
    Sweatman MB; Quirke N
    J Phys Chem B; 2005 May; 109(20):10389-94. PubMed ID: 16852259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials.
    Peng B; Yu YX
    Langmuir; 2008 Nov; 24(21):12431-9. PubMed ID: 18839971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of supercritical CO2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques.
    Melnichenko YB; Wignall GD; Cole DR; Frielinghaus H
    J Chem Phys; 2006 May; 124(20):204711. PubMed ID: 16774368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tendency toward crossover of the effective susceptibility exponent from its doubled Ising value to its doubled mean-field value near a double critical point.
    Pradeep UK
    J Chem Phys; 2008 Oct; 129(13):134506. PubMed ID: 19045104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study.
    Do DD; Do HD
    J Chem Phys; 2005 Aug; 123(8):084701. PubMed ID: 16164315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical phase diagrams for colloids and non-adsorbing polymer.
    Fleer GJ; Tuinier R
    Adv Colloid Interface Sci; 2008 Nov; 143(1-2):1-47. PubMed ID: 18783771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic modeling of solute adsorption equilibrium from near-critical carbon dioxide.
    Yang X
    J Colloid Interface Sci; 2004 May; 273(2):362-8. PubMed ID: 15082369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment.
    Wongkoblap A; Do DD
    J Phys Chem B; 2007 Dec; 111(50):13949-56. PubMed ID: 18044864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some remarks on the calculation of the pore size distribution function of activated carbons.
    Gauden PA; Terzyk AP; Kowalczyk P
    J Colloid Interface Sci; 2006 Aug; 300(2):453-74. PubMed ID: 16690070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.