These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15267771)

  • 41. Energetics, relative stabilities, and size-dependent properties of nanosized carbon clusters of different families: fullerenes, bucky-diamond, icosahedral, and bulk-truncated structures.
    Yu M; Chaudhuri I; Leahy C; Wu SY; Jayanthi CS
    J Chem Phys; 2009 May; 130(18):184708. PubMed ID: 19449944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical study of oxygen adsorption on pure Au(n+1)+ and doped MAu(n)+ cationic gold clusters for M = Ti, Fe and n = 3-7.
    Torres MB; Fernández EM; Balbás LC
    J Phys Chem A; 2008 Jul; 112(29):6678-89. PubMed ID: 18578480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1-17).
    Wang J; Han JG
    J Phys Chem A; 2006 Nov; 110(46):12670-7. PubMed ID: 17107119
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of the electronic properties of Snn- clusters (n=4-45) and the semiconductor-to-metal transition.
    Cui LF; Wang LM; Wang LS
    J Chem Phys; 2007 Feb; 126(6):064505. PubMed ID: 17313227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ab initio calculations for the photoelectron spectra of vanadium clusters.
    Li S; Alemany MM; Chelikowsky JR
    J Chem Phys; 2004 Sep; 121(12):5893-8. PubMed ID: 15367017
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory.
    Wang J; Han JG
    J Chem Phys; 2005 Dec; 123(24):244303. PubMed ID: 16396533
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small iron doped carbon clusters: a comparison with early and late first-row transition metal doped clusters.
    Largo L; Barrientos C; Redondo P
    J Chem Phys; 2009 Apr; 130(13):134304. PubMed ID: 19355729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of an EAM potential for zinc and its application to the growth of nanoparticles.
    Römer F; Braun S; Kraska T
    Phys Chem Chem Phys; 2009 May; 11(20):4039-50. PubMed ID: 19440634
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational investigation of TiSin (n=2-15) clusters by the density-functional theory.
    Guo LJ; Liu X; Zhao GF; Luo YH
    J Chem Phys; 2007 Jun; 126(23):234704. PubMed ID: 17600432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and electronic properties of Si n, Si n+, and AlSi n-1 (n=2-13) clusters: theoretical investigation based on ab initio molecular orbital theory.
    Nigam S; Majumder C; Kulshreshtha SK
    J Chem Phys; 2004 Oct; 121(16):7756-63. PubMed ID: 15485237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Al7Ag and Al7Au clusters with large highest occupied molecular orbital-lowest unoccupied molecular orbital gap.
    Chen MX; Yan XH; Wei SH
    J Phys Chem A; 2007 Sep; 111(35):8659-62. PubMed ID: 17696321
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ideal strength on clusters from first principles: the Ti(13) case.
    Salazar Villanueva M; Romero AH; Bautista Hernández A
    Nanotechnology; 2009 Nov; 20(46):465709. PubMed ID: 19847033
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties.
    Yang M; Jackson KA; Jellinek J
    J Chem Phys; 2006 Oct; 125(14):144308. PubMed ID: 17042591
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Study of the structural and electronic properties of Rh(N) and Ru(N) clusters (N < 20) within the density functional theory.
    Aguilera-Granja F; Balbás LC; Vega A
    J Phys Chem A; 2009 Dec; 113(48):13483-91. PubMed ID: 19856933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical study of stable structures and photoelectron spectra of mass-selected Al12Cs-, Al11Cs2-, and Al10Cs3- clusters.
    Shimada H; Matsuzawa H
    J Chem Phys; 2008 Aug; 129(5):054313. PubMed ID: 18698906
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electronic and structural evolution and chemical bonding in ditungsten oxide clusters: W2O(n)- and W2O(n) (n = 1-6).
    Zhai HJ; Huang X; Cui LF; Li X; Li J; Wang LS
    J Phys Chem A; 2005 Jul; 109(27):6019-30. PubMed ID: 16833938
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural and electronic properties of Si(n), Si(n)-, and PSi(n-1) clusters (2 < or = n < or = 13): Theoretical investigation based on ab initio molecular orbital theory.
    Nigam S; Majumder C; Kulshreshtha SK
    J Chem Phys; 2006 Aug; 125(7):074303. PubMed ID: 16942335
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Geometries and magnetisms of the Zr(n) (n=2-8) clusters: the density functional investigations.
    Wang CC; Zhao RN; Han JG
    J Chem Phys; 2006 May; 124(19):194301. PubMed ID: 16729808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n = 1-9.
    Qu ZW; Kroes GJ
    J Phys Chem B; 2006 May; 110(18):8998-9007. PubMed ID: 16671707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Geometries and electronic properties of the neutral and charged rare earth Yb-doped Si(n) (n = 1-6) clusters: a relativistic density functional investigation.
    Zhao RN; Ren ZY; Guo P; Bai JT; Zhang CH; Han JG
    J Phys Chem A; 2006 Mar; 110(11):4071-9. PubMed ID: 16539431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.