BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15267854)

  • 1. On the structural and transport properties of the soft sticky dipole and related single-point water models.
    Fennell CJ; Gezelter JD
    J Chem Phys; 2004 May; 120(19):9175-84. PubMed ID: 15267854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical properties of the soft sticky dipole-quadrupole-octupole water model: a molecular dynamics study.
    Chowdhuri S; Tan ML; Ichiye T
    J Chem Phys; 2006 Oct; 125(14):144513. PubMed ID: 17042615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An application of flexible constraints in Monte Carlo simulations of the isobaric--isothermal ensemble of liquid water and ice Ih with the polarizable and flexible mobile charge densities in harmonic oscillators model.
    Saint-Martin H; Hess B; Berendsen HJ
    J Chem Phys; 2004 Jun; 120(23):11133-43. PubMed ID: 15268143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, thermodynamics, and liquid-vapor equilibrium of ethanol from molecular-dynamics simulations using nonadditive interactions.
    Patel S; Brooks CL
    J Chem Phys; 2005 Oct; 123(16):164502. PubMed ID: 16268707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A classical polarizable model for simulations of water and ice.
    Viererblová L; Kolafa J
    Phys Chem Chem Phys; 2011 Nov; 13(44):19925-35. PubMed ID: 21959694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growing correlation length in supercooled water.
    Moore EB; Molinero V
    J Chem Phys; 2009 Jun; 130(24):244505. PubMed ID: 19566164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q.
    Alejandre J; Chapela GA; Saint-Martin H; Mendoza N
    Phys Chem Chem Phys; 2011 Nov; 13(44):19728-40. PubMed ID: 21922085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model.
    Patel S; Brooks CL
    J Chem Phys; 2005 Jan; 122(2):024508. PubMed ID: 15638599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft sticky dipole-quadrupole-octupole potential energy function for liquid water: an approximate moment expansion.
    Ichiye T; Tan ML
    J Chem Phys; 2006 Apr; 124(13):134504. PubMed ID: 16613458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of liquid water: hybrid density functionals.
    Todorova T; Seitsonen AP; Hutter J; Kuo IF; Mundy CJ
    J Phys Chem B; 2006 Mar; 110(8):3685-91. PubMed ID: 16494424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dipole polarization of water molecules on ice formation under an electrostatic field.
    Wei S; Xiaobin X; Hong Z; Chuanxiang X
    Cryobiology; 2008 Feb; 56(1):93-9. PubMed ID: 18155188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitations of the rigid planar nonpolarizable models of water.
    Baranyai A; Bartók A; Chialvo AA
    J Chem Phys; 2006 Feb; 124(7):74507. PubMed ID: 16497057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum effects in liquid water and ice: model dependence.
    Hernández de la Peña L; Kusalik PG
    J Chem Phys; 2006 Aug; 125(5):054512. PubMed ID: 16942231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ; Bryk T; Haymet AD
    J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum effects on the maximum in density of water as described by the TIP4PQ/2005 model.
    Noya EG; Vega C; Sesé LM; Ramírez R
    J Chem Phys; 2009 Sep; 131(12):124518. PubMed ID: 19791905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.