These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 15267922)

  • 1. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules.
    Capaccioli S; Ngai KL; Ancherbak S; Bertoldo M; Ciampalini G; Thayyil MS; Wang LM
    J Chem Phys; 2019 Jul; 151(3):034504. PubMed ID: 31325935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems.
    Kessairi K; Capaccioli S; Prevosto D; Lucchesi M; Sharifi S; Rolla PA
    J Phys Chem B; 2008 Apr; 112(15):4470-3. PubMed ID: 18366219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary and secondary relaxations in bis-5-hydroxypentylphthalate.
    Maślanka S; Paluch M; Sułkowski WW; Roland CM
    J Chem Phys; 2005 Feb; 122(8):84511. PubMed ID: 15836067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework.
    Prevosto D; Capaccioli S; Lucchesi M; Rolla PA; Ngai KL
    J Chem Phys; 2004 Mar; 120(10):4808-15. PubMed ID: 15267341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic susceptibility in glass forming molecular liquids: the search for universal relaxation patterns II.
    Blochowicz T; Gainaru C; Medick P; Tschirwitz C; Rössler EA
    J Chem Phys; 2006 Apr; 124(13):134503. PubMed ID: 16613457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary and secondary relaxations in bis-5-hydroxypentylphthalate revisited.
    Ngai KL; Kamińska E; Sekuła M; Paluch M
    J Chem Phys; 2005 Nov; 123(20):204507. PubMed ID: 16351281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric secondary relaxations in polypropylene glycols.
    Grzybowska K; Grzybowski A; Zioło J; Paluch M; Capaccioli S
    J Chem Phys; 2006 Jul; 125(4):44904. PubMed ID: 16942189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Johari-Goldstein beta-relaxation of water.
    Capaccioli S; Ngai KL; Shinyashiki N
    J Phys Chem B; 2007 Jul; 111(28):8197-209. PubMed ID: 17585798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A connection between the structural α-relaxation and the β-relaxation found in bulk metallic glass-formers.
    Ngai KL; Wang Z; Gao XQ; Yu HB; Wang WH
    J Chem Phys; 2013 Jul; 139(1):014502. PubMed ID: 23822309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol.
    Ngai KL; Wang LM
    J Phys Chem B; 2019 Jan; 123(3):714-719. PubMed ID: 30601008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of relaxation dynamics of a hydrogen-bonded glass former after removal of the hydrogen bonds.
    Grzybowska K; Pawlus S; Mierzwa M; Paluch M; Ngai KL
    J Chem Phys; 2006 Oct; 125(14):144507. PubMed ID: 17042609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of excess wing and beta-process in simple glass formers.
    Gainaru C; Kahlau R; Rössler EA; Böhmer R
    J Chem Phys; 2009 Nov; 131(18):184510. PubMed ID: 19916615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of physical aging on the Johari-Goldstein and alpha relaxations of D-sorbitol: a study by thermally stimulated depolarization currents.
    Moura Ramos JJ; Diogo HP; Pinto SS
    J Chem Phys; 2007 Apr; 126(14):144506. PubMed ID: 17444722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.