These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
749 related articles for article (PubMed ID: 15267959)
1. Comparison of density functionals for energy and structural differences between the high- [5T2g: (t2g)4(eg)2] and low- [1A1g: (t2g)6(eg)0] spin states of the hexaquoferrous cation [Fe(H2O)6]2+. Fouqueau A; Mer S; Casida ME; Lawson Daku LM; Hauser A; Mineva T; Neese F J Chem Phys; 2004 May; 120(20):9473-86. PubMed ID: 15267959 [TBL] [Abstract][Full Text] [Related]
2. Comparison of density functionals for energy and structural differences between the high- [5T2g:(t2g)4(eg)2] and low- [1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, [Fe(NH3)6]2+. Fouqueau A; Casida ME; Lawson Daku LM; Hauser A; Neese F J Chem Phys; 2005 Jan; 122(4):44110. PubMed ID: 15740238 [TBL] [Abstract][Full Text] [Related]
3. Relative energy of the high-(5T2g) and low-(1A1g) spin states of [Fe(H2O)6]2+, [Fe(NH3)6]2+, and [Fe(bpy)3]2+: CASPT2 versus density functional theory. Pierloot K; Vancoillie S J Chem Phys; 2006 Sep; 125(12):124303. PubMed ID: 17014170 [TBL] [Abstract][Full Text] [Related]
4. Relative energy of the high-(5T2g) and low-(1A1g) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. Pierloot K; Vancoillie S J Chem Phys; 2008 Jan; 128(3):034104. PubMed ID: 18205485 [TBL] [Abstract][Full Text] [Related]
5. Assessment of density functionals for the high-spin/low-spin energy difference in the low-spin iron(II) tris(2,2'-bipyridine) complex. Lawson Daku LM; Vargas A; Hauser A; Fouqueau A; Casida ME Chemphyschem; 2005 Jul; 6(7):1393-410. PubMed ID: 15968698 [TBL] [Abstract][Full Text] [Related]
6. Comparison of density functionals for differences between the high- (5T2g) and low- (1A1g) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)('NHS4')]. Ganzenmüller G; Berkaïne N; Fouqueau A; Casida ME; Reiher M J Chem Phys; 2005 Jun; 122(23):234321. PubMed ID: 16008455 [TBL] [Abstract][Full Text] [Related]
7. The electronic spectrum of AgCl2: ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects. Ramírez-Solís A; Poteau R; Daudey JP J Chem Phys; 2006 Jan; 124(3):034307. PubMed ID: 16438583 [TBL] [Abstract][Full Text] [Related]
8. A multiconfigurational ab initio study of the zero-field splitting in the di- and trivalent hexaquo-chromium complexes. Liakos DG; Ganyushin D; Neese F Inorg Chem; 2009 Nov; 48(22):10572-80. PubMed ID: 19845329 [TBL] [Abstract][Full Text] [Related]
9. Periodic density functional theory study of spin crossover in the cesium iron hexacyanochromate prussian blue analog. Wojdeł JC; Moreira Ide P; Illas F J Chem Phys; 2009 Jan; 130(1):014702. PubMed ID: 19140626 [TBL] [Abstract][Full Text] [Related]
10. Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. Duboc C; Ganyushin D; Sivalingam K; Collomb MN; Neese F J Phys Chem A; 2010 Oct; 114(39):10750-8. PubMed ID: 20828179 [TBL] [Abstract][Full Text] [Related]
11. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study. Sinnecker S; Neese F J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624 [TBL] [Abstract][Full Text] [Related]
12. Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. Neese F J Am Chem Soc; 2006 Aug; 128(31):10213-22. PubMed ID: 16881651 [TBL] [Abstract][Full Text] [Related]
13. Mapping the d-d excited-state manifolds of transition metal beta-diiminato-imido complexes. Comparison of density functional theory and CASPT2 energetics. Ghosh A; Gonzalez E; Tangen E; Roos BO J Phys Chem A; 2008 Dec; 112(50):12792-8. PubMed ID: 18433111 [TBL] [Abstract][Full Text] [Related]
14. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections. Khvostichenko D; Choi A; Boulatov R J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545 [TBL] [Abstract][Full Text] [Related]
15. Double-hybrid density functional theory for excited electronic states of molecules. Grimme S; Neese F J Chem Phys; 2007 Oct; 127(15):154116. PubMed ID: 17949141 [TBL] [Abstract][Full Text] [Related]
16. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor. Carl SA; Nguyen HM; Elsamra RM; Nguyen MT; Peeters J J Chem Phys; 2005 Mar; 122(11):114307. PubMed ID: 15836215 [TBL] [Abstract][Full Text] [Related]
17. Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches. Ramírez-Solís A; Poteau R; Vela A; Daudey JP J Chem Phys; 2005 Apr; 122(16):164306. PubMed ID: 15945683 [TBL] [Abstract][Full Text] [Related]
18. The performance of nonhybrid density functionals for calculating the structures and spin states of Fe(II) and Fe(III) complexes. Deeth RJ; Fey N J Comput Chem; 2004 Nov; 25(15):1840-8. PubMed ID: 15389750 [TBL] [Abstract][Full Text] [Related]
19. Ab initio study on the spectroscopy of CuCl2. II. Benchmark calculations on the X2Pi g-C2Deltag and X2Pi g-D2Deltag transitions. Ramírez-Solís A; Daudey JP J Chem Phys; 2005 Jan; 122(1):14315. PubMed ID: 15638667 [TBL] [Abstract][Full Text] [Related]
20. Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective. Ali ME; Sanyal B; Oppeneer PM J Phys Chem B; 2012 May; 116(20):5849-59. PubMed ID: 22512398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]