BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15268039)

  • 1. The structure of methane hydrate under geological conditions a combined Rietveld and maximum entropy analysis.
    Baumert J; Gutt C; Johnson MR; Tse JS; Klug DD; Press W
    J Chem Phys; 2004 Jun; 120(21):10163-71. PubMed ID: 15268039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of hydrogen in deuterated methane hydrate by maximum entropy method with neutron powder diffraction.
    Hoshikawa A; Igawa N; Yamauchi H; Ishii Y
    J Chem Phys; 2006 Jul; 125(3):34505. PubMed ID: 16863360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron density topology of cubic structure I Xe clathrate hydrate at high pressure.
    Flacau R; Desgreniers S; Tse JS
    J Chem Phys; 2008 Dec; 129(24):244507. PubMed ID: 19123517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cage occupancies in the high pressure structure H methane hydrate: a neutron diffraction study.
    Tulk CA; Klug DD; dos Santos AM; Karotis G; Guthrie M; Molaison JJ; Pradhan N
    J Chem Phys; 2012 Feb; 136(5):054502. PubMed ID: 22320746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas hydrates of argon and methane synthesized at high pressures: composition, thermal expansion, and self-preservation.
    Ogienko AG; Kurnosov AV; Manakov AY; Larionov EG; Ancharov AI; Sheromov MA; Nesterov AN
    J Phys Chem B; 2006 Feb; 110(6):2840-6. PubMed ID: 16471893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.
    Susilo R; Alavi S; Ripmeester JA; Englezos P
    J Chem Phys; 2008 May; 128(19):194505. PubMed ID: 18500878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel isomorphic phase transition in β-pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction.
    Sasai K; Kofu M; Ibberson RM; Hirota K; Yamaura J; Hiroi Z; Yamamuro O
    J Phys Condens Matter; 2010 Jan; 22(1):015403. PubMed ID: 21386225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.
    Murshed MM; Kuhs WF
    J Phys Chem B; 2009 Apr; 113(15):5172-80. PubMed ID: 19354304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.
    Buchanan P; Soper AK; Thompson H; Westacott RE; Creek JL; Hobson G; Koh CA
    J Chem Phys; 2005 Oct; 123(16):164507. PubMed ID: 16268712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes and preferential cage occupancy of ethane hydrate and methane-ethane mixed gas hydrate under very high pressure.
    Hirai H; Takahara N; Kawamura T; Yamamoto Y; Yagi T
    J Chem Phys; 2008 Dec; 129(22):224503. PubMed ID: 19071924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal expansivity for sI and sII clathrate hydrates.
    Hester KC; Huo Z; Ballard AL; Koh CA; Miller KT; Sloan ED
    J Phys Chem B; 2007 Aug; 111(30):8830-5. PubMed ID: 17625823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo and molecular dynamics simulations of methane in potassium montmorillonite clay hydrates at elevated pressures and temperatures.
    Titiloye JO; Skipper NT
    J Colloid Interface Sci; 2005 Feb; 282(2):422-7. PubMed ID: 15589548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates.
    Seo Y; Kang SP; Jang W
    J Phys Chem A; 2009 Sep; 113(35):9641-9. PubMed ID: 19658414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal expansivity of tetrahydrofuran clathrate hydrate with diatomic guest molecules.
    Park Y; Choi YN; Yeon SH; Lee H
    J Phys Chem B; 2008 Jun; 112(23):6897-9. PubMed ID: 18489143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum entropy method and charge flipping, a powerful combination to visualize the true nature of structural disorder from in situ X-ray powder diffraction data.
    Samy A; Dinnebier RE; van Smaalen S; Jansen M
    Acta Crystallogr B; 2010 Apr; 66(Pt 2):184-95. PubMed ID: 20305352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement.
    Thompson H; Soper AK; Buchanan P; Aldiwan N; Creek JL; Koh CA
    J Chem Phys; 2006 Apr; 124(16):164508. PubMed ID: 16674147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP
    J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of calcium aluminate decahydrate (CaAl2O4.10D2O) from neutron and X-ray powder diffraction data.
    Christensen AN; Lebech B; Sheptyakov D; Hanson JC
    Acta Crystallogr B; 2007 Dec; 63(Pt 6):850-61. PubMed ID: 18004040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic observation and in-situ Raman scattering studies on high-pressure phase transformations of Kr hydrate.
    Sasaki S; Hori S; Kume T; Shimizu H
    J Phys Chem B; 2006 May; 110(20):9838-42. PubMed ID: 16706436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: a new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions.
    Lu WJ; Chou IM; Burruss RC; Yang MZ
    Appl Spectrosc; 2006 Feb; 60(2):122-9. PubMed ID: 16542563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.