These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 15268111)

  • 1. Prediction of membrane protein structures by replica-exchange Monte Carlo simulations: case of two helices.
    Kokubo H; Okamoto Y
    J Chem Phys; 2004 Jun; 120(22):10837-47. PubMed ID: 15268111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics and stability of transmembrane helix packing: a replica-exchange simulation with a knowledge-based membrane potential.
    Chen Z; Xu Y
    Proteins; 2006 Feb; 62(2):539-52. PubMed ID: 16299775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of the native and non-native states of the glycophorin transmembrane helix dimer.
    Mottamal M; Zhang J; Lazaridis T
    Proteins; 2006 Mar; 62(4):996-1009. PubMed ID: 16395713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of helix packing in transmembrane dimer of the cell death factor BNIP3: a molecular modeling study.
    Vereshaga YA; Volynsky PE; Pustovalova JE; Nolde DE; Arseniev AS; Efremov RG
    Proteins; 2007 Nov; 69(2):309-25. PubMed ID: 17600828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers.
    Schneider D
    FEBS Lett; 2004 Nov; 577(1-2):5-8. PubMed ID: 15527753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potential smoothing algorithm accurately predicts transmembrane helix packing.
    Pappu RV; Marshall GR; Ponder JW
    Nat Struct Biol; 1999 Jan; 6(1):50-5. PubMed ID: 9886292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching.
    Adams PD; Engelman DM; Brünger AT
    Proteins; 1996 Nov; 26(3):257-61. PubMed ID: 8953647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel scoring function for modeling structures of oligomers of transmembrane alpha-helices.
    Park Y; Elsner M; Staritzbichler R; Helms V
    Proteins; 2004 Nov; 57(3):577-85. PubMed ID: 15382237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combined simulation approach of atomistic and continuum models for the thermodynamics of lysozyme crystals.
    Chang J; Lenhoff AM; Sandler SI
    J Phys Chem B; 2005 Oct; 109(41):19507-15. PubMed ID: 16853520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin.
    Urano R; Okamoto Y
    J Chem Phys; 2015 Dec; 143(23):235101. PubMed ID: 26696075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structure prediction with the UNRES force-field using Replica-Exchange Monte Carlo-with-Minimization; Comparison with MCM, CSA, and CFMC.
    Nanias M; Chinchio M; Ołdziej S; Czaplewski C; Scheraga HA
    J Comput Chem; 2005 Nov; 26(14):1472-86. PubMed ID: 16088925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of helix-helix interactions of bacteriorhodopsin by replica-exchange simulations.
    Kokubo H; Okamoto Y
    Biophys J; 2009 Feb; 96(3):765-76. PubMed ID: 18835905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure prediction of protein-solid surface interactions reveals a molecular recognition motif of statherin for hydroxyapatite.
    Makrodimitris K; Masica DL; Kim ET; Gray JJ
    J Am Chem Soc; 2007 Nov; 129(44):13713-22. PubMed ID: 17929924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side-chain entropy effects on protein secondary structure formation.
    Chellgren BW; Creamer TP
    Proteins; 2006 Feb; 62(2):411-20. PubMed ID: 16315271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction.
    Hall SE; Roberts K; Vaidehi N
    J Mol Graph Model; 2009; 27(8):944-50. PubMed ID: 19285892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-atom Monte Carlo approach to protein-peptide binding.
    Staneva I; Wallin S
    J Mol Biol; 2009 Nov; 393(5):1118-28. PubMed ID: 19733177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Monte Carlo sampling method of amino acid sequences adaptable to given main-chain atoms in the proteins.
    Ogata K; Soejima K; Higo J
    J Biochem; 2006 Oct; 140(4):543-52. PubMed ID: 16945938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.