These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15268165)

  • 21. Behavior of a thermotropic nematic liquid crystal confined to controlled pore glasses as studied by 129Xe NMR spectroscopy.
    Tallavaara P; Telkki VV; Jokisaari J
    J Phys Chem B; 2006 Nov; 110(43):21603-12. PubMed ID: 17064115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase equilibria and interfacial tension of fluids confined in narrow pores.
    Hamada Y; Koga K; Tanaka H
    J Chem Phys; 2007 Aug; 127(8):084908. PubMed ID: 17764295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tractable molecular theory of transport of Lennard-Jones fluids in nanopores.
    Bhatia SK; Jepps O; Nicholson D
    J Chem Phys; 2004 Mar; 120(9):4472-85. PubMed ID: 15268615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of water infiltration into conical hydrophobic nanopores.
    Liu L; Zhao J; Yin CY; Culligan PJ; Chen X
    Phys Chem Chem Phys; 2009 Aug; 11(30):6520-4. PubMed ID: 19809685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Block copolymers confined in a nanopore: pathfinding in a curving and frustrating flatland.
    Sevink GJ; Zvelindovsky AV
    J Chem Phys; 2008 Feb; 128(8):084901. PubMed ID: 18315081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the molecular origin of high-pressure effects in nanoconfinement: the role of surface chemistry and roughness.
    Long Y; Palmer JC; Coasne B; Śliwinska-Bartkowiak M; Jackson G; Müller EA; Gubbins KE
    J Chem Phys; 2013 Oct; 139(14):144701. PubMed ID: 24116635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Pore-Pore Correlations on Capillary Condensation in an Ensemble of Slit-like Pores: Application of a Density Functional Theory.
    Patrykiejew A; Reszko-Zygmunt J; Rzysko W; Sokolowski S
    J Colloid Interface Sci; 2000 Aug; 228(1):135-140. PubMed ID: 10882503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density functional theory of adsorption in pillared slit-like pores.
    Sokołowska Z; Sokołowski S
    J Colloid Interface Sci; 2007 Dec; 316(2):652-9. PubMed ID: 17904568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores.
    Lísal M; Brennan JK; Smith WR
    J Chem Phys; 2006 Feb; 124(6):64712. PubMed ID: 16483234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freezing phenomena of lennard-jones fluid confined in jungle-gym nanospace: a monte carlo study.
    Watanabe S; Sugiyama H; Miyahara M
    Langmuir; 2008 Feb; 24(3):802-9. PubMed ID: 18179268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study.
    Do DD; Do HD
    J Chem Phys; 2005 Aug; 123(8):084701. PubMed ID: 16164315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation.
    Collell J; Galliero G
    J Chem Phys; 2014 May; 140(19):194702. PubMed ID: 24852552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the structure of bilayer condensed phases confined between crystalline walls of triangular symmetry.
    Patrykiejew A; Sokołowski S
    J Chem Phys; 2006 May; 124(19):194705. PubMed ID: 16729832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local chemical potential and pressure tensor in inhomogeneous nanoconfined fluids.
    Eslami H; Mehdipour N
    J Chem Phys; 2012 Oct; 137(14):144702. PubMed ID: 23061856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores.
    Fu D; Li XS
    J Chem Phys; 2006 Aug; 125(8):084716. PubMed ID: 16965048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of fluids confined in crystalline slitlike nanoscopic pores.
    Sałamacha L; Patrykiejew A; Sokołowski S; Binder K
    J Chem Phys; 2005 Feb; 122(7):074703. PubMed ID: 15743261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel mesophase formed by top-shaped molecules in the bulk and unsupported thin films: a molecular dynamics study.
    Kim H; Bedrov D; Smith GD; Magda JJ
    J Chem Phys; 2006 Mar; 124(12):124912. PubMed ID: 16599730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of excess adsorption, solvation force, and plate-fluid interfacial tension for Lennard-Jones fluid confined in slit pores.
    Fu D
    J Chem Phys; 2006 Apr; 124(16):164701. PubMed ID: 16674151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.