These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15268229)

  • 1. Electrostatic interactions of charged dipolar proteins in reverse micelles.
    Piñero J; Bhuiyan LB; Bratko D
    J Chem Phys; 2004 Jun; 120(24):11941-7. PubMed ID: 15268229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model.
    Dahirel V; Jardat M; Dufrêche JF; Turq P
    J Chem Phys; 2007 Sep; 127(9):095101. PubMed ID: 17824765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction between electrolyte and surfaces decorated with charged groups: A molecular dynamics simulation study.
    Calero C; Faraudo J
    J Chem Phys; 2010 Jan; 132(2):024704. PubMed ID: 20095691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dressed counterions: strong electrostatic coupling in the presence of salt.
    Kanduc M; Naji A; Forsman J; Podgornik R
    J Chem Phys; 2010 Mar; 132(12):124701. PubMed ID: 20370139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.
    Truzzolillo D; Bordi F; Sciortino F; Sennato S
    J Chem Phys; 2010 Jul; 133(2):024901. PubMed ID: 20632770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field theoretical analysis of driving forces for the uptake of proteins by like-charged polyelectrolyte brushes: effects of charge regulation and patchiness.
    de Vos WM; Leermakers FA; de Keizer A; Cohen Stuart MA; Kleijn JM
    Langmuir; 2010 Jan; 26(1):249-59. PubMed ID: 19697905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of electrostatic interactions in the design of protein-protein interfaces.
    Sheinerman FB; Honig B
    J Mol Biol; 2002 Apr; 318(1):161-77. PubMed ID: 12054776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation and measurement of the dipole moment of small proteins: use of protein data base.
    Takashima S; Asami K
    Biopolymers; 1993 Jan; 33(1):59-68. PubMed ID: 8427939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect.
    Zhou HX
    Proteins; 2005 Oct; 61(1):69-78. PubMed ID: 16044460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces.
    Zhou J; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2004 Jul; 121(2):1050-7. PubMed ID: 15260639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial optimization of electrostatic interactions between the ionized groups in globular proteins.
    Spassov VZ; Atanasov BP
    Proteins; 1994 Jul; 19(3):222-9. PubMed ID: 7937735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive adsorption of model charged proteins: the effect of total charge and charge distribution.
    Gong P; Szleifer I
    J Colloid Interface Sci; 2004 Oct; 278(1):81-90. PubMed ID: 15313640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic interactions between a protein and oppositely charged micelles.
    Andreozzi P; Bonincontro A; La Mesa C
    J Phys Chem B; 2008 Mar; 112(11):3339-45. PubMed ID: 18302358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase behavior of aqueous solutions containing dipolar proteins from second-order perturbation theory.
    Tavares FW; Bratko D; Striolo A; Blanch HW; Prausnitz JM
    J Chem Phys; 2004 May; 120(20):9859-69. PubMed ID: 15268003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature studies of encapsulated proteins.
    Van Horn WD; Simorellis AK; Flynn PF
    J Am Chem Soc; 2005 Oct; 127(39):13553-60. PubMed ID: 16190719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins.
    Spassov VZ; Ladenstein R; Karshikoff AD
    Protein Sci; 1997 Jun; 6(6):1190-6. PubMed ID: 9194179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions.
    Zangi R; Berne BJ
    J Phys Chem B; 2006 Nov; 110(45):22736-41. PubMed ID: 17092024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of charged spheroidal colloidal particles.
    Alvarez C; Téllez G
    J Chem Phys; 2010 Oct; 133(14):144908. PubMed ID: 20950042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.