BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15268243)

  • 1. Predicting shielding constants in solution using gauge invariant atomic orbital theory and the effective fragment potential method.
    Freitag MA; Hillman B; Agrawal A; Gordon MS
    J Chem Phys; 2004 Jan; 120(3):1197-202. PubMed ID: 15268243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The prediction of (1)H chemical shifts in amines: a semiempirical and ab initio investigation.
    Basso EA; Gauze GF; Abraham RJ
    Magn Reson Chem; 2007 Sep; 45(9):749-57. PubMed ID: 17640030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio prediction of optical rotation: comparison of density functional theory and Hartree-Fock methods for three 2,7,8-trioxabicyclo[3.2.1]octanes.
    Stephens PJ; Devlin FJ; Cheeseman JR; Frisch MJ
    Chirality; 2002 May; 14(4):288-96. PubMed ID: 11968068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: comparison of semiempirical, ab initio, and density functional results.
    Linnanto J; Korppi-Tommola J
    J Comput Chem; 2004 Jan; 25(1):123-38. PubMed ID: 14635000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR shielding as a probe of intermolecular interactions: ab initio and density functional theory studies.
    Platts JA; Gkionis K
    Phys Chem Chem Phys; 2009 Nov; 11(44):10331-9. PubMed ID: 19890517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR shielding constants for hydrogen guest molecules in structure II clathrates.
    Alavi S; Ripmeester JA; Klug DD
    J Chem Phys; 2005 Aug; 123(5):051107. PubMed ID: 16108623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory.
    Ligabue A; Sauer SP; Lazzeretti P
    J Chem Phys; 2007 Apr; 126(15):154111. PubMed ID: 17461618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.
    Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K
    J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear-magnetic-resonance shielding constants calculated by pseudospectral methods.
    Cao Y; Beachy MD; Braden DA; Morrill L; Ringnalda MN; Friesner RA
    J Chem Phys; 2005 Jun; 122(22):224116. PubMed ID: 15974660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method.
    Beer M; Kussmann J; Ochsenfeld C
    J Chem Phys; 2011 Feb; 134(7):074102. PubMed ID: 21341823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods.
    Steinmann C; Fedorov DG; Jensen JH
    J Phys Chem A; 2010 Aug; 114(33):8705-12. PubMed ID: 20446697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gauge invariance of the spin-other-orbit contribution to the g-tensors of electron paramagnetic resonance.
    Patchkovskii S; Strong RT; Pickard CJ; Un S
    J Chem Phys; 2005 Jun; 122(21):214101. PubMed ID: 15974722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants.
    Harding ME; Lenhart M; Auer AA; Gauss J
    J Chem Phys; 2008 Jun; 128(24):244111. PubMed ID: 18601321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio self-consistent field and potential-dependent partial equalization of orbital electronegativity calculations of hydration properties of N-acetyl-N'-methyl-alanineamide.
    Grant JA; Williams RL; Scheraga HA
    Biopolymers; 1990; 30(9-10):929-49. PubMed ID: 2092822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular structure, IR and NMR spectra of 2,6 distyrylpyridine by density functional theory and ab initio Hartree-Fock calculations.
    Atalay Y; Başoğlu A; Avci D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):460-6. PubMed ID: 17540615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General orbital invariant MP2-F12 theory.
    Werner HJ; Adler TB; Manby FR
    J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.