These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15268277)

  • 1. Surface nuclear spin relaxation of 199Hg.
    Romalis MV; Lin L
    J Chem Phys; 2004 Jan; 120(3):1511-5. PubMed ID: 15268277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequency dynamics in hemoglobin measured by magnetic relaxation dispersion.
    Victor K; Van-Quynh A; Bryant RG
    Biophys J; 2005 Jan; 88(1):443-54. PubMed ID: 15475581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paramagnetic relaxation of protons in rotationally immobilized proteins.
    Korb JP; Diakova G; Bryant RG
    J Chem Phys; 2006 Apr; 124(13):134910. PubMed ID: 16613480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance.
    Pelupessy P; Ferrage F; Bodenhausen G
    J Chem Phys; 2007 Apr; 126(13):134508. PubMed ID: 17430048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solvation of the mercury(II) ion-a 199Hg NMR study.
    Maliarik M; Persson I
    Magn Reson Chem; 2005 Oct; 43(10):835-42. PubMed ID: 16025553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and parametric optimization of 1H off-resonance relaxation NMR experiments designed to map polypeptide self-recognition and other noncovalent interactions.
    Milojevic J; Esposito V; Das R; Melacini G
    J Phys Chem B; 2006 Oct; 110(41):20664-70. PubMed ID: 17034257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; van Wyk JA
    Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The magnetic field and temperature dependences of proton spin-lattice relaxation in proteins.
    Goddard Y; Korb JP; Bryant RG
    J Chem Phys; 2007 May; 126(17):175105. PubMed ID: 17492890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic relaxation dispersion of lithium ion in solutions of DNA.
    Victor KG; Teng CL; Dinesen TR; Korb JP; Bryant RG
    Magn Reson Chem; 2004 Jun; 42(6):518-23. PubMed ID: 15137045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotational motion in the molecular crystals meta- and ortho-carborane studied by deuteron nuclear magnetic resonance.
    Winterlich M; Böhmer R; Diezemann G; Zimmermann H
    J Chem Phys; 2005 Sep; 123(9):94504. PubMed ID: 16164350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the magnetic field on the supramolecular structure of chiral smectic C phases: (2)H NMR studies.
    Domenici V; Marini A; Veracini CA; Zhang J; Dong RY
    Chemphyschem; 2007 Dec; 8(18):2575-87. PubMed ID: 18067200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double resonance experiments in low magnetic field: dynamic polarization of protons by (14)N and measurement of low NQR frequencies.
    Seliger J; Zagar V
    J Magn Reson; 2009 Aug; 199(2):199-207. PubMed ID: 19464934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron paramagnetic resonance study of 3,4,5-trimethoxytetraphenyl porphyrinoxovanadium (IV) complex.
    Sharma S; Kumar A; Chand P; Sharma BK; Sarkar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(3):556-64. PubMed ID: 16024276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance and spin relaxation in biological systems.
    Bryant RG; Korb JP
    Magn Reson Imaging; 2005 Feb; 23(2):167-73. PubMed ID: 15833608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation-allowed nuclear magnetic resonance transitions by interference between the quadrupolar coupling and the paramagnetic interaction.
    Ling W; Jerschow A
    J Chem Phys; 2007 Feb; 126(6):064502. PubMed ID: 17313224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Gd(III)-based magnetic resonance imaging contrast agents: static and transient zero-field splitting contributions to the electronic relaxation and their impact on relaxivity.
    Benmelouka M; Borel A; Moriggi L; Helm L; Merbach AE
    J Phys Chem B; 2007 Feb; 111(4):832-40. PubMed ID: 17249827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H and 129Xe NMR absorption line shapes in the presence of highly polarized and concentrated xenon solutions in high magnetic field.
    Marion DJ; Huber G; Dubois L; Berthault P; Desvaux H
    J Magn Reson; 2007 Jul; 187(1):78-87. PubMed ID: 17466548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the possible manifestation of harmonic-anharmonic dynamical transition in glassy media in electron paramagnetic resonance of nitroxide spin probes.
    Dzuba SA; Kirilina EP; Salnikov ES
    J Chem Phys; 2006 Aug; 125(5):054502. PubMed ID: 16942221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution study of nuclear magnetic relaxation dispersion of purine nucleotides: effects of spin-spin coupling.
    Kiryutin A; Ivanov K; Yurkovskaya A; Vieth HM
    Solid State Nucl Magn Reson; 2008; 34(1-2):142-9. PubMed ID: 18424085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.