These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 15268371)
1. Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system. Bruggemann B; May V J Chem Phys; 2004 Feb; 120(5):2325-36. PubMed ID: 15268371 [TBL] [Abstract][Full Text] [Related]
2. The observation of ultrafast excited-state dynamical evolution in B800- partially or completely released LH2 of Rhodobacter sphaeroides 601 at room temperature. Liu W; Liu Y; Yan Y; Liu K; Guo L; Xu C; Qian S J Biomol Struct Dyn; 2006 Apr; 23(5):529-36. PubMed ID: 16494502 [TBL] [Abstract][Full Text] [Related]
3. Exciton band structure in bacterial peripheral light-harvesting complexes. Trinkunas G; Zerlauskiene O; Urbonienė V; Chmeliov J; Gall A; Robert B; Valkunas L J Phys Chem B; 2012 May; 116(17):5192-8. PubMed ID: 22480241 [TBL] [Abstract][Full Text] [Related]
4. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601. Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087 [TBL] [Abstract][Full Text] [Related]
5. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides. Polívka T; Niedzwiedzki D; Fuciman M; Sundström V; Frank HA J Phys Chem B; 2007 Jun; 111(25):7422-31. PubMed ID: 17547450 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems. Hyeon-Deuk K; Tanimura Y; Cho M J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of exciton relaxation in LH2 antenna probed by multipulse nonlinear spectroscopy. Novoderezhkin VI; Cohen Stuart TA; van Grondelle R J Phys Chem A; 2011 Apr; 115(16):3834-44. PubMed ID: 21265578 [TBL] [Abstract][Full Text] [Related]
8. On the influence of pigment-protein interactions on the energy transfer processes in photosynthetic membrane structures. 2. LH2 complex of Rhodobacter sphaeroides. Klevanik AV Membr Cell Biol; 2000; 13(3):437-53. PubMed ID: 10768493 [TBL] [Abstract][Full Text] [Related]
9. Emission lineshapes of the B850 band of light-harvesting 2 (LH2) complex in purple bacteria: a second order time-nonlocal quantum master equation approach. Kumar P; Jang S J Chem Phys; 2013 Apr; 138(13):135101. PubMed ID: 23574256 [TBL] [Abstract][Full Text] [Related]
10. Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. Trinkunas G; Herek JL; Polívka T; Sundström V; Pullerits T Phys Rev Lett; 2001 Apr; 86(18):4167-70. PubMed ID: 11328122 [TBL] [Abstract][Full Text] [Related]
11. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Nagarajan V; Parson WW Biochemistry; 1997 Feb; 36(8):2300-6. PubMed ID: 9047332 [TBL] [Abstract][Full Text] [Related]
12. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2. Harel E; Long PD; Engel GS Opt Lett; 2011 May; 36(9):1665-7. PubMed ID: 21540962 [TBL] [Abstract][Full Text] [Related]
13. Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides. Stepanenko I; Kompanetz V; Makhneva Z; Chekalin S; Moskalenko A; Razjivin A J Phys Chem B; 2012 Mar; 116(9):2886-90. PubMed ID: 22268655 [TBL] [Abstract][Full Text] [Related]
14. Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes. Janosi L; Kosztin I; Damjanović A J Chem Phys; 2006 Jul; 125(1):014903. PubMed ID: 16863329 [TBL] [Abstract][Full Text] [Related]
15. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy. Fidler AF; Singh VP; Long PD; Dahlberg PD; Engel GS J Chem Phys; 2013 Oct; 139(15):155101. PubMed ID: 24160544 [TBL] [Abstract][Full Text] [Related]
16. On the effects of PufX on the absorption properties of the light-harvesting complexes of Rhodobacter sphaeroides. Geyer T Biophys J; 2007 Dec; 93(12):4374-81. PubMed ID: 17766331 [TBL] [Abstract][Full Text] [Related]
17. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. Burdett JJ; Gosztola D; Bardeen CJ J Chem Phys; 2011 Dec; 135(21):214508. PubMed ID: 22149803 [TBL] [Abstract][Full Text] [Related]
18. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. Womick JM; Moran AM J Phys Chem B; 2009 Dec; 113(48):15747-59. PubMed ID: 19894754 [TBL] [Abstract][Full Text] [Related]
19. Excitation-energy migration in self-assembled cyclic zinc(II)-porphyrin arrays: a close mimicry of a natural light-harvesting system. Hwang IW; Park M; Ahn TK; Yoon ZS; Ko DM; Kim D; Ito F; Ishibashi Y; Khan SR; Nagasawa Y; Miyasaka H; Ikeda C; Takahashi R; Ogawa K; Satake A; Kobuke Y Chemistry; 2005 Jun; 11(12):3753-61. PubMed ID: 15827988 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast exciton transfers in DNA and its nonlinear optical spectroscopy. Hyeon-Deuk K; Tanimura Y; Cho M J Chem Phys; 2008 Apr; 128(13):135102. PubMed ID: 18397109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]