BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15268390)

  • 1. Dynamics of chain closure: approximate treatment of nonlocal interactions.
    Debnath P; Cherayil BJ
    J Chem Phys; 2004 Feb; 120(5):2482-9. PubMed ID: 15268390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of loop formation in polymer chains.
    Toan NM; Morrison G; Hyeon C; Thirumalai D
    J Phys Chem B; 2008 May; 112(19):6094-106. PubMed ID: 18269274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple growth models of rigid multifilament biopolymers.
    Stukalin EB; Kolomeisky AB
    J Chem Phys; 2004 Jul; 121(2):1097-104. PubMed ID: 15260645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules.
    Giupponi G; De Fabritiis G; Coveney PV
    J Chem Phys; 2007 Apr; 126(15):154903. PubMed ID: 17461663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative compressibility and nonequivalence of two statistical ensembles in the escape transition of a polymer chain.
    Skvortsov AM; Klushin LI; Leermakers FA
    J Chem Phys; 2007 Jan; 126(2):024905. PubMed ID: 17228971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of a reversible supramolecular polymer studied by comparison of the effects of temperature and chain stoppers.
    Knoben W; Besseling NA; Cohen Stuart MA
    J Chem Phys; 2007 Jan; 126(2):024907. PubMed ID: 17228973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of diffusion-limited catalytically activated reactions: an extension of the Wilemski-Fixman approach.
    BĂ©nichou O; Coppey M; Moreau M; Oshanin G
    J Chem Phys; 2005 Nov; 123(19):194506. PubMed ID: 16321099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of loop formation in a semiflexible polymer.
    Santo KP; Sebastian KL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061801. PubMed ID: 20365181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Langevin dynamics simulations of the diffusion of molecular knots in tensioned polymer chains.
    Huang L; Makarov DE
    J Phys Chem A; 2007 Oct; 111(41):10338-44. PubMed ID: 17637045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation study on the translocation of polymer chains through nanopores.
    Chen YC; Wang C; Luo MB
    J Chem Phys; 2007 Jul; 127(4):044904. PubMed ID: 17672722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single particle model to simulate the dynamics of entangled polymer melts.
    Kindt P; Briels WJ
    J Chem Phys; 2007 Oct; 127(13):134901. PubMed ID: 17919048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics study of polymer conformation as a function of concentration and solvent quality.
    Zhou Z; Daivis PJ
    J Chem Phys; 2009 Jun; 130(22):224904. PubMed ID: 19530786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules?
    Morgado C; Vincent MA; Hillier IH; Shan X
    Phys Chem Chem Phys; 2007 Jan; 9(4):448-51. PubMed ID: 17216059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A macromolecule in a solvent: adaptive resolution molecular dynamics simulation.
    Praprotnik M; Delle Site L; Kremer K
    J Chem Phys; 2007 Apr; 126(13):134902. PubMed ID: 17430062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Langevin dynamics simulations reveal biologically relevant folds arising from the incorporation of a torsional potential.
    Anjukandi P; Pereira GG; Williams MA
    J Theor Biol; 2010 Aug; 265(3):245-9. PubMed ID: 20471987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular dynamics in crowded environments.
    Echeverria C; Kapral R
    J Chem Phys; 2010 Mar; 132(10):104902. PubMed ID: 20232985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular simulations at constant pH.
    Mongan J; Case DA
    Curr Opin Struct Biol; 2005 Apr; 15(2):157-63. PubMed ID: 15837173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal mode analysis using the driven molecular dynamics method. II. An application to biological macromolecules.
    Kaledin M; Brown A; Kaledin AL; Bowman JM
    J Chem Phys; 2004 Sep; 121(12):5646-53. PubMed ID: 15366988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of the reaction between the free end of a tethered self-avoiding polymer and a flat penetrable surface: a renormalization group study.
    Cherayil BJ; Bhattacharyya P
    J Chem Phys; 2014 Jun; 140(23):234902. PubMed ID: 24952563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of polyelectrolyte-polyampholyte complexes. Effect of solvent quality and salt concentration.
    Jeon J; Dobrynin AV
    J Phys Chem B; 2006 Dec; 110(48):24652-65. PubMed ID: 17134228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.