These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 15268462)

  • 1. Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H + CH4 --> H2 + CH3 hydrogen abstraction reaction in full Cartesian space.
    Zhao Y; Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3100-7. PubMed ID: 15268462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation.
    Yamamoto T; Miller WH
    J Chem Phys; 2004 Feb; 120(7):3086-99. PubMed ID: 15268461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum instanton evaluation of the thermal rate constants and kinetic isotope effects for SiH4+H-->SiH3+H2 reaction in full Cartesian space.
    Wang W; Feng S; Zhao Y
    J Chem Phys; 2007 Mar; 126(11):114307. PubMed ID: 17381206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH4 → H2 + CH3.
    Suleimanov YV; Collepardo-Guevara R; Manolopoulos DE
    J Chem Phys; 2011 Jan; 134(4):044131. PubMed ID: 21280711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-instanton evaluation of the kinetic isotope effects.
    Vanícek J; Miller WH; Castillo JF; Aoiz FJ
    J Chem Phys; 2005 Aug; 123(5):054108. PubMed ID: 16108632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test of the quantum instanton approximation for thermal rate constants for some collinear reactions.
    Ceotto M; Miller WH
    J Chem Phys; 2004 Apr; 120(14):6356-62. PubMed ID: 15267524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum reaction rate from higher derivatives of the thermal flux-flux autocorrelation function at time zero.
    Ceotto M; Yang S; Miller WH
    J Chem Phys; 2005 Jan; 122(4):44109. PubMed ID: 15740237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dynamics of the H+CH4-->H2+CH3 reaction in curvilinear coordinates: full-dimensional and reduced dimensional calculations of reaction rates.
    Schiffel G; Manthe U
    J Chem Phys; 2010 Feb; 132(8):084103. PubMed ID: 20192286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient estimators for quantum instanton evaluation of the kinetic isotope effects: application to the intramolecular hydrogen transfer in pentadiene.
    Vanícek J; Miller WH
    J Chem Phys; 2007 Sep; 127(11):114309. PubMed ID: 17887839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a family of dividing surfaces normal to the minimum energy path for quantum instanton rate constants.
    Li Y; Miller WH
    J Chem Phys; 2006 Aug; 125(6):64104. PubMed ID: 16942270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path integral evaluation of H diffusion on Ni(100) surface based on the quantum instanton approximation.
    Wang W; Zhao Y
    J Chem Phys; 2009 Mar; 130(11):114708. PubMed ID: 19317556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evaluation of the temperature dependence of the rate constant based on the quantum instanton approximation.
    Buchowiecki M; Vanícek J
    J Chem Phys; 2010 May; 132(19):194106. PubMed ID: 20499950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermochemistry and accurate quantum reaction rate calculations for H2/HD/D2 + CH3.
    Nyman G; van Harrevelt R; Manthe U
    J Phys Chem A; 2007 Oct; 111(41):10331-7. PubMed ID: 17547382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved treatment of spectator mode vibrations in reduced dimensional quantum dynamics: application to the hydrogen abstraction reactions mu + CH4, H + CH4, D + CH4, and CH3 + CH4.
    Banks ST; Tautermann CS; Remmert SM; Clary DC
    J Chem Phys; 2009 Jul; 131(4):044111. PubMed ID: 19655841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate potential energy surface and quantum reaction rate calculations for the H+CH4-->H2+CH3 reaction.
    Wu T; Werner HJ; Manthe U
    J Chem Phys; 2006 Apr; 124(16):164307. PubMed ID: 16674135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path integral evaluation of the quantum instanton rate constant for proton transfer in a polar solvent.
    Yamamoto T; Miller WH
    J Chem Phys; 2005 Jan; 122(4):44106. PubMed ID: 15740234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of quantum dynamics and quantum transition state theory estimates of the H + CH4 reaction rate.
    Andersson S; Nyman G; Arnaldsson A; Manthe U; Jónsson H
    J Phys Chem A; 2009 Apr; 113(16):4468-78. PubMed ID: 19275158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum instanton calculation of rate constant for CH4 + OH → CH3 + H2O reaction: torsional anharmonicity and kinetic isotope effect.
    Wang W; Zhao Y
    J Chem Phys; 2012 Dec; 137(21):214306. PubMed ID: 23231230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiclassical instanton approach to calculation of reaction rate constants in multidimensional chemical systems.
    Kryvohuz M
    J Chem Phys; 2011 Mar; 134(11):114103. PubMed ID: 21428603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path-integral virial estimator for reaction-rate calculation based on the quantum instanton approximation.
    Yang S; Yamamoto T; Miller WH
    J Chem Phys; 2006 Feb; 124(8):084102. PubMed ID: 16512703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.