These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 15268576)

  • 1. The one-particle Green's function method in the Dirac-Hartree-Fock framework. I. Second-order valence ionization energies of Ne through Xe.
    Pernpointner M; Trofimov AB
    J Chem Phys; 2004 Mar; 120(9):4098-106. PubMed ID: 15268576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The one-particle Green's function method in the Dirac-Hartree-Fock framework. II. Third-order valence ionization energies of the noble gases, CO and ICN.
    Pernpointner M
    J Chem Phys; 2004 Nov; 121(18):8782-91. PubMed ID: 15527342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study.
    Pecul M; Saue T; Ruud K; Rizzo A
    J Chem Phys; 2004 Aug; 121(7):3051-7. PubMed ID: 15291614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging momentum orbital densities of conformationally versatile molecules: a benchmark theoretical study of the molecular and electronic structures of dimethoxymethane.
    Huang YR; Knippenberg S; Hajgató B; François JP; Deng JK; Deleuze MS
    J Phys Chem A; 2007 Jul; 111(26):5879-97. PubMed ID: 17566995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n=2, 4, 6).
    Pernpointner M; Cederbaum LS
    J Chem Phys; 2005 Jun; 122(21):214302. PubMed ID: 15974733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Norbornane: an investigation into its valence electronic structure using electron momentum spectroscopy, and density functional and Green's function theories.
    Knippenberg S; Nixon KL; Brunger MJ; Maddern T; Campbell L; Trout N; Wang F; Newell WR; Deleuze MS; Francois JP; Winkler DA
    J Chem Phys; 2004 Dec; 121(21):10525-41. PubMed ID: 15549936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental study of valence-shell ionization spectra of guanine.
    Zaytseva IL; Trofimov AB; Schirmer J; Plekan O; Feyer V; Richter R; Coreno M; Prince KC
    J Phys Chem A; 2009 Dec; 113(52):15142-9. PubMed ID: 20028182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiconfiguration Dirac-Hartree-Fock adjusted energy-consistent pseudopotential for uranium: spin-orbit configuration interaction and Fock-space coupled-cluster study of U4+ and U5+.
    Weigand A; Cao X; Vallet V; Flament JP; Dolg M
    J Phys Chem A; 2009 Oct; 113(43):11509-16. PubMed ID: 19601603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PtF6(2-) dianion and its detachment spectrum: a fully relativistic study.
    Pernpointner M; Cederbaum LS
    J Chem Phys; 2007 Apr; 126(14):144310. PubMed ID: 17444715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular ionization energies and ground- and ionic-state properties using a non-Dyson electron propagator approach.
    Trofimov AB; Schirmer J
    J Chem Phys; 2005 Oct; 123(14):144115. PubMed ID: 16238382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory.
    Filatov M; Cremer D
    J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-component relativistic methods for the heaviest elements.
    Kedziera D; Barysz M
    J Chem Phys; 2004 Oct; 121(14):6719-27. PubMed ID: 15473727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.
    Mitin AV; van Wüllen C
    J Chem Phys; 2006 Feb; 124(6):64305. PubMed ID: 16483205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic sequence of relativistic approximations.
    Dyall KG
    J Comput Chem; 2002 Jun; 23(8):786-93. PubMed ID: 12012355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron momentum spectroscopy of norbornadiene at the benchmark ADC(3) level.
    Morini F; Hajgató B; Deleuze MS
    J Phys Chem A; 2010 Sep; 114(34):9374-87. PubMed ID: 20690625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.