BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15268585)

  • 1. Neutral and zwitterionic glycine.H(2)O complexes: A theoretical and matrix-isolation Fourier transform infrared study.
    Ramaekers R; Pajak J; Lambie B; Maes G
    J Chem Phys; 2004 Mar; 120(9):4182-93. PubMed ID: 15268585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine and its hydrated complexes: a matrix isolation infrared study.
    Espinoza C; Szczepanski J; Vala M; Polfer NC
    J Phys Chem A; 2010 May; 114(18):5919-27. PubMed ID: 20405902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the interaction between amino acids and DNA: a combined matrix-isolation FT-IR and theoretical study of the 1-methyluracil·glycine H-bond complexes using a dual sublimation furnace.
    Boeckx B; Maes G
    J Phys Chem B; 2012 Oct; 116(39):11890-8. PubMed ID: 22963512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform infrared spectroscopic and theoretical study of water interactions with glycine and its N-methylated derivatives.
    Panuszko A; Śmiechowski M; Stangret J
    J Chem Phys; 2011 Mar; 134(11):115104. PubMed ID: 21428668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix-isolation FT-IR spectroscopic study and theoretical DFT(B3LYP)/6-31++G** calculations of the vibrational and conformational properties of tyrosine.
    Ramaekers R; Pajak J; Rospenk M; Maes G
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 May; 61(7):1347-56. PubMed ID: 15820868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FT-IR and theoretical study of 3,5-dimethyl-1H-pyrazole-1-carboxamidine (L) and the complexes CoL2(H2O)2(NO3)2, NiL2(H2O)2(NO3)2.
    Pogány P; Kovács A; Szécsényi KM; Leovac VM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1466-73. PubMed ID: 18562246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of excess electron and one water molecule on relative stability of the canonical and zwitterionic tautomers of glycine.
    Haranczyk M; Gutowski M
    J Chem Phys; 2008 Mar; 128(12):125101. PubMed ID: 18376976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of the pi...H hydrogen-bonded ternary complex, (C(2)H(4))(2)H(2)O, using matrix isolation infrared spectroscopy.
    Thompson MG; Lewars EG; Parnis JM
    J Phys Chem A; 2005 Oct; 109(42):9499-506. PubMed ID: 16866400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and photoelectron spectrum of the glycine molecular anion: assignment to a dipole-bound electron species with a high-dipole moment, non-zwitterionic form of the neutral core.
    Diken EG; Hammer NI; Johnson MA
    J Chem Phys; 2004 Jun; 120(21):9899-902. PubMed ID: 15268006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational analysis of amino acids and short peptides in hydrated media. I. L-glycine and L-leucine.
    Derbel N; Hernández B; Pflüger F; Liquier J; Geinguenaud F; Jaïdane N; Lakhdar ZB; Ghomi M
    J Phys Chem B; 2007 Feb; 111(6):1470-7. PubMed ID: 17243664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent effects on glycine II. Water-assisted tautomerization.
    Balta B; Aviyente V
    J Comput Chem; 2004 Apr; 25(5):690-703. PubMed ID: 14978712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, spectra and stability of a tetrafluoromethane-water complex.
    Mierzwicki K; Mielke Z; Sałdyka M; Coussan S; Roubin P
    Phys Chem Chem Phys; 2008 Mar; 10(9):1292-7. PubMed ID: 18292864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared photodissociation spectroscopy of electrosprayed ions in a Fourier transform mass spectrometer.
    Oh HB; Lin C; Hwang HY; Zhai H; Breuker K; Zabrouskov V; Carpenter BK; McLafferty FW
    J Am Chem Soc; 2005 Mar; 127(11):4076-83. PubMed ID: 15771545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectroscopy and quantum chemical calculations of OH-(H2O)n complexes.
    Tsuji K; Shibuya K
    J Phys Chem A; 2009 Sep; 113(37):9945-51. PubMed ID: 19689151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectrum of glycine molecule.
    Kumar S; Rai AK; Singh VB; Rai SB
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Sep; 61(11-12):2741-6. PubMed ID: 16043073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix isolation FTIR spectroscopic and theoretical study of dimethyl sulfite.
    Borba A; Gómez-Zavaglia A; Simões PN; Fausto R
    J Phys Chem A; 2005 Apr; 109(16):3578-86. PubMed ID: 16839024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FT-IR vibrational spectrum and DFT:B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate-guanidoacetate nickel (II) complex: [Ni(Gly)(Gaa)].
    Ramos JM; Versiane O; Felcman J; Téllez S CA
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Feb; 72(1):182-9. PubMed ID: 19036632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the conformational behavior of amino acids and N-acetylated amino acids: a theoretical and matrix-isolation FT-IR study of N-acetylglycine.
    Boeckx B; Maes G
    J Phys Chem A; 2012 Mar; 116(8):1956-65. PubMed ID: 22273063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the peptide bond on the conformation of amino acids: a theoretical and FT-IR matrix-isolation study of N-acetylproline.
    Boeckx B; Ramaekers R; Maes G
    Biophys Chem; 2011 Dec; 159(2-3):247-56. PubMed ID: 21840115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.