These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15268608)

  • 1. Angular resolution and range of dipole-dipole correlations in water.
    Mathias G; Tavan P
    J Chem Phys; 2004 Mar; 120(9):4393-403. PubMed ID: 15268608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of non-neutral slab systems with long-range electrostatic interactions in two-dimensional periodic boundary conditions.
    Ballenegger V; Arnold A; Cerdà JJ
    J Chem Phys; 2009 Sep; 131(9):094107. PubMed ID: 19739849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations.
    Mark P; Nilsson L
    J Comput Chem; 2002 Oct; 23(13):1211-9. PubMed ID: 12210146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical properties of the soft sticky dipole-quadrupole-octupole water model: a molecular dynamics study.
    Chowdhuri S; Tan ML; Ichiye T
    J Chem Phys; 2006 Oct; 125(14):144513. PubMed ID: 17042615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural correlations and motifs in liquid water at selected temperatures: ab initio and empirical model predictions.
    Mantz YA; Chen B; Martyna GJ
    J Phys Chem B; 2006 Mar; 110(8):3540-54. PubMed ID: 16494410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation studies of ionic liquids: orientational correlations and static dielectric properties.
    Schröder C; Rudas T; Steinhauser O
    J Chem Phys; 2006 Dec; 125(24):244506. PubMed ID: 17199354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the structure of aqueous cesium chloride solutions by combining diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling.
    Mile V; Pusztai L; Dominguez H; Pizio O
    J Phys Chem B; 2009 Aug; 113(31):10760-9. PubMed ID: 19588949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic fields in liquid dielectrics.
    Martin DR; Matyushov DV
    J Chem Phys; 2008 Nov; 129(17):174508. PubMed ID: 19045359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three effective Hamiltonian models of increasing complexity: triazene in water as a test case.
    Galván IF; Martín ME; Aguilar MA; Ruiz-López MF
    J Chem Phys; 2006 Jun; 124(21):214504. PubMed ID: 16774420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation studies of the protein-water interface. II. Properties at the mesoscopic resolution.
    Rudas T; Schröder C; Boresch S; Steinhauser O
    J Chem Phys; 2006 Jun; 124(23):234908. PubMed ID: 16821954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute rotational dynamics at the water liquid/vapor interface.
    Benjamin I
    J Chem Phys; 2007 Nov; 127(20):204712. PubMed ID: 18052451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for designing simple point charge models for liquid water with three interaction sites.
    Glättli A; Daura X; Van Gunsteren WF
    J Comput Chem; 2003 Jul; 24(9):1087-96. PubMed ID: 12759908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of electrosprayed water nanodroplets: internal potential gradients, location of excess charge centers, and "hopping" protons.
    Ahadi E; Konermann L
    J Phys Chem B; 2009 May; 113(20):7071-80. PubMed ID: 19388688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nonlinear dielectric behavior of water: comparisons of various approaches to the nonlinear dielectric increment.
    Fulton RL
    J Chem Phys; 2009 May; 130(20):204503. PubMed ID: 19485453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual dipolar couplings in protein structure determination.
    de Alba E; Tjandra N
    Methods Mol Biol; 2004; 278():89-106. PubMed ID: 15317993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, dynamics, and the free energy of solute adsorption at liquid-vapor interfaces of simple dipolar systems: molecular dynamics results for pure and mixed Stockmayer fluids.
    Paul S; Chandra A
    J Phys Chem B; 2007 Nov; 111(43):12500-7. PubMed ID: 17927243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft sticky dipole-quadrupole-octupole potential energy function for liquid water: an approximate moment expansion.
    Ichiye T; Tan ML
    J Chem Phys; 2006 Apr; 124(13):134504. PubMed ID: 16613458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.