These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 15268621)

  • 1. Ab initio calculation of electrostatic multipoles with Wannier functions for large-scale biomolecular simulations.
    Sagui C; Pomorski P; Darden TA; Roland C
    J Chem Phys; 2004 Mar; 120(9):4530-44. PubMed ID: 15268621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations.
    Sagui C; Pedersen LG; Darden TA
    J Chem Phys; 2004 Jan; 120(1):73-87. PubMed ID: 15267263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multipole-based water potential with implicit polarization for biomolecular simulations.
    Walsh TR; Liang T
    J Comput Chem; 2009 Apr; 30(6):893-9. PubMed ID: 18785240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic potentials of proteins in water: a structured continuum approach.
    Hildebrandt A; Blossey R; Rjasanow S; Kohlbacher O; Lenhof HP
    Bioinformatics; 2007 Jan; 23(2):e99-103. PubMed ID: 17237112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen bonding and induced dipole moments in water: predictions from the Gaussian charge polarizable model and Car-Parrinello molecular dynamics.
    Dyer PJ; Cummings PT
    J Chem Phys; 2006 Oct; 125(14):144519. PubMed ID: 17042621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic energies and forces computed without explicit interparticle interactions: a linear time complexity formulation.
    Petrella RJ; Karplus M
    J Comput Chem; 2005 Jun; 26(8):755-87. PubMed ID: 15800892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties.
    Sokalski WA; Shibata M; Ornstein RL; Rein R
    J Comput Chem; 1992 Sep; 13(7):883-7. PubMed ID: 11538053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized coarse-grained model based on point multipole and Gay-Berne potentials.
    Golubkov PA; Ren P
    J Chem Phys; 2006 Aug; 125(6):64103. PubMed ID: 16942269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic multipoles: electrostatic potential fit, local reference axis systems, and conformational dependence.
    Kramer C; Gedeck P; Meuwly M
    J Comput Chem; 2012 Jul; 33(20):1673-88. PubMed ID: 22544510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution.
    Egwolf B; Tavan P
    J Chem Phys; 2004 Jan; 120(4):2056-68. PubMed ID: 15268342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferable atom equivalent multicentered multipole expansion method.
    Whitehead CE; Breneman CM; Sukumar N; Ryan MD
    J Comput Chem; 2003 Mar; 24(4):512-29. PubMed ID: 12594794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dependence of electrostatic solvation energy on dielectric constants in Poisson-Boltzmann calculations.
    Tjong H; Zhou HX
    J Chem Phys; 2006 Nov; 125(20):206101. PubMed ID: 17144745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit solvation based on generalized Born theory in different dielectric environments.
    Feig M; Im W; Brooks CL
    J Chem Phys; 2004 Jan; 120(2):903-11. PubMed ID: 15267926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution.
    Bordner AJ; Huber GA
    J Comput Chem; 2003 Feb; 24(3):353-67. PubMed ID: 12548727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles calculation of local atomic polarizabilities.
    Lillestolen TC; Wheatley RJ
    J Phys Chem A; 2007 Nov; 111(43):11141-6. PubMed ID: 17918806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions.
    Werneck AS; Filho TM; Dardenne LE
    J Phys Chem A; 2008 Jan; 112(2):268-80. PubMed ID: 18095663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.