These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1526886)

  • 21. Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials.
    Zhang SY; Robertson D; Yates G; Everett A
    J Neurophysiol; 1999 Dec; 82(6):3307-15. PubMed ID: 10601462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voltage responses to tones of outer hair cells in the basal turn of the guinea-pig cochlea: significance for electromotility and desensitization.
    Russell IJ; Kössl M
    Proc Biol Sci; 1992 Feb; 247(1319):97-105. PubMed ID: 1349187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users.
    Abbas PJ; Tejani VD; Scheperle RA; Brown CJ
    Ear Hear; 2017; 38(4):409-425. PubMed ID: 28085738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The voltage responses of hair cells in the basal turn of the guinea-pig cochlea.
    Russell IJ; Kössl M
    J Physiol; 1991 Apr; 435():493-511. PubMed ID: 1770446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The temperature dependency of neural and hair cell responses evoked by high frequencies.
    Brown MC; Smith DI; Nuttall AL
    J Acoust Soc Am; 1983 May; 73(5):1662-70. PubMed ID: 6863743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Round-window recorded potential of single-fibre discharge (unit response) in normal and noise-damaged cochleas.
    Versnel H; Prijs VF; Schoonhoven R
    Hear Res; 1992 May; 59(2):157-70. PubMed ID: 1618707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrocochleography for different electrode positions in guinea pig.
    van Deelen GW; Smoorenburg GF
    Acta Otolaryngol; 1986; 101(3-4):207-16. PubMed ID: 3705949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.
    Bergin MJ; Bird PA; Vlajkovic SM; Thorne PR
    Hear Res; 2015 Dec; 330(Pt A):147-54. PubMed ID: 26493491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intracellular recordings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents.
    Brown MC; Nuttall AL; Masta RI
    Science; 1983 Oct; 222(4619):69-72. PubMed ID: 6623058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Summating potential and action potential gradients on and in the vicinity of the round window in guinea pig.
    Badr-el-Dine M; Gerken GM; Meyerhoff WL
    Ann Otol Rhinol Laryngol; 1997 Feb; 106(2):139-44. PubMed ID: 9041819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological correlates of progressive sensorineural pathology in carboplatin-treated chinchillas.
    El-Badry MM; McFadden SL
    Brain Res; 2007 Feb; 1134(1):122-30. PubMed ID: 17198689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of auditory nerve responses in absence of outer hair cells.
    Dallos P; Harris D
    J Neurophysiol; 1978 Mar; 41(2):365-83. PubMed ID: 650272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural Contributions to the Cochlear Summating Potential: Spiking and Dendritic Components.
    Lutz BT; Hutson KA; Trecca EMC; Hamby M; Fitzpatrick DC
    J Assoc Res Otolaryngol; 2022 Jun; 23(3):351-363. PubMed ID: 35254541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2-Amino-4-phosphonobutyric acid receptors are not involved in synaptic transmission from hair cells to auditory neurons.
    Puel JL; Bobbin RP; Fallon M
    Hear Res; 1988 Dec; 37(1):83-7. PubMed ID: 2852185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.