These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1526893)

  • 21. Relationship between evoked otoacoustic emissions and middle-ear dynamic characteristics.
    Wada H; Ohyama K; Kobayashi T; Sunaga N; Koike T
    Audiology; 1993; 32(5):282-92. PubMed ID: 8216027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Measurement of evoked otoacoustic emissions in normal-hearing adults].
    Xu L
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1989; 24(6):352-4, 385. PubMed ID: 2485463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pass/fail rates for repeated click-evoked otoacoustic emission and auditory brain stem response screenings in newborns.
    McNellis EL; Klein AJ
    Otolaryngol Head Neck Surg; 1997 Apr; 116(4):431-7. PubMed ID: 9141390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.
    Keefe DH; Feeney MP; Hunter LL; Fitzpatrick DF
    J Acoust Soc Am; 2017 Jan; 141(1):499. PubMed ID: 28147608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Latency of auditory brain-stem responses and otoacoustic emissions using tone-burst stimuli.
    Neely ST; Norton SJ; Gorga MP; Jesteadt W
    J Acoust Soc Am; 1988 Feb; 83(2):652-6. PubMed ID: 3351122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects.
    Williams EA; Brookes GB; Prasher DK
    Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evoked oto-acoustic emissions from adults and infants: clinical applications.
    Bonfils P; Uziel A; Pujol R
    Acta Otolaryngol; 1988; 105(5-6):445-9. PubMed ID: 3400447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spontaneous otoacoustic emissions measured using an open ear-canal recording technique.
    Boul A; Lineton B
    Hear Res; 2010 Oct; 269(1-2):112-21. PubMed ID: 20600736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of the conditioning click on click-evoked otoacoustic emission.
    Kevanishvili Z; Tietze G; Gobsch H
    Scand Audiol; 1996; 25(3):161-6. PubMed ID: 8881003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Active cochlear mechanisms. Significance of a clinical study of acoustic emissions].
    Loth D; Avan P; Teyssou M; Menguy C; Bisaro F
    Ann Otolaryngol Chir Cervicofac; 1988; 105(7):515-21. PubMed ID: 3218821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distortion-product and click-evoked otoacoustic emissions of normally-hearing adults.
    Smurzynski J; Kim DO
    Hear Res; 1992 Mar; 58(2):227-40. PubMed ID: 1568944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous otoacoustic emissions from normal human ears. Preliminary report.
    Cianfrone G; Mattia M
    Scand Audiol Suppl; 1986; 25():121-7. PubMed ID: 3472316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Evoked otoacoustic emissions and their modification by contralateral acoustic stimulation].
    Plinkert PK; Lenarz T
    Laryngorhinootologie; 1992 Feb; 71(2):74-8. PubMed ID: 1571058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of hearing loss in acoustic neuroma: an otoacoustic emission study.
    Prasher DK; Tun T; Brookes GB; Luxon LM
    Acta Otolaryngol; 1995 May; 115(3):375-81. PubMed ID: 7653257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sinusoidal amplitude modulation alters contralateral noise suppression of evoked otoacoustic emissions in humans.
    Maison S; Micheyl C; Collet L
    Neuroscience; 1999; 91(1):133-8. PubMed ID: 10336065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements.
    Büki B; Avan P; Lemaire JJ; Dordain M; Chazal J; Ribári O
    Hear Res; 1996 May; 94(1-2):125-39. PubMed ID: 8789818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient evoked otoacoustic emission latency and estimates of cochlear tuning in preterm neonates.
    Moleti A; Sisto R; Paglialonga A; Sibella F; Anteunis L; Parazzini M; Tognola G
    J Acoust Soc Am; 2008 Nov; 124(5):2984-94. PubMed ID: 19045786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paradoxical effects of contralateral white noise on evoked otoacoustic emissions in ears with acoustic neuroma.
    Quaranta A; Gandolfi A; Fava G; Quaranta N; Zini C
    Acta Otolaryngol; 2000 Mar; 120(2):227-30. PubMed ID: 11603779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the frequency selectivity of contralateral acoustic stimulation on the active mechanisms of the organ of corti by analyzing the changes in the amplitude of transitory evoked otoacoustic emissions and distortion products.
    Ibargüen AM; Santaolalla Montoya F; del Rey AS; Fernandez JM
    J Otolaryngol Head Neck Surg; 2008 Aug; 37(4):457-62. PubMed ID: 19128576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.