These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 15268961)

  • 21. Transformation of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite.
    Michałowicz J; Duda W; Stufka-Olczyk J
    Chemosphere; 2007 Jan; 66(4):657-63. PubMed ID: 16963105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Peroxidase oxidation of phenols].
    Davidenko TI
    Prikl Biokhim Mikrobiol; 2004; 40(6):625-9. PubMed ID: 15609850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters.
    Hamdaoui O; Naffrechoux E
    J Hazard Mater; 2007 Aug; 147(1-2):381-94. PubMed ID: 17276594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO(2)/UV.
    González LF; Sarria V; Sánchez OF
    Bioresour Technol; 2010 May; 101(10):3493-9. PubMed ID: 20097065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The activity and selectivity of catalytic peroxide oxidation of chlorophenols over Cu-Al hydrotalcite/clay composite.
    Zhou S; Gu C; Qian Z; Xu J; Xia C
    J Colloid Interface Sci; 2011 May; 357(2):447-52. PubMed ID: 21402383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics.
    Sahinkaya E; Dilek FB
    Biodegradation; 2007 Aug; 18(4):427-37. PubMed ID: 17091347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).
    Ye F; Ji H; Ye Y
    J Hazard Mater; 2012 Jun; 219-220():164-8. PubMed ID: 22521134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transformation of phenolic compounds upon UVA irradiation of anthraquinone-2-sulfonate.
    Maurino V; Borghesi D; Vione D; Minero C
    Photochem Photobiol Sci; 2008 Mar; 7(3):321-7. PubMed ID: 18389149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of dissolved gases and pH on sonolysis of 2,4-dichlorophenol.
    Uddin H; Hayashi S
    J Hazard Mater; 2009 Oct; 170(2-3):1273-6. PubMed ID: 19553012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The oxidation of phenol by ferrate(VI) and ferrate(V). A pulse radiolysis and stopped-flow study.
    Rush JD; Cyr JE; Zhao Z; Bielski BH
    Free Radic Res; 1995 Apr; 22(4):349-60. PubMed ID: 7633565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalytic oxidation of phenolic compounds by using a carbon nanotube-titanium dioxide composite catalyst.
    Silva CG; Faria JL
    ChemSusChem; 2010 May; 3(5):609-18. PubMed ID: 20437451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system.
    Winkelmann K; Sharma VK; Lin Y; Shreve KA; Winkelmann C; Hoisington LJ; Yngard RA
    Chemosphere; 2008 Aug; 72(11):1694-9. PubMed ID: 18561980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2,4-dichlorophenol degradation by an integrated process: photoelectrocatalytic oxidation and E-Fenton oxidation.
    Zhao BX; Li XZ; Wang P
    Photochem Photobiol; 2007; 83(3):642-6. PubMed ID: 17132072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution.
    Liou RM; Chen SH; Hung MY; Hsu CS; Lai JY
    Chemosphere; 2005 Mar; 59(1):117-25. PubMed ID: 15698652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decomposition of trichloroethylene and 2,4-dichlorophenol by ozonation in several organic solvents.
    Tsai TY; Okawa K; Nakano Y; Nishijima W; Okada M
    Chemosphere; 2004 Dec; 57(9):1151-5. PubMed ID: 15504474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics.
    Oturan N; Panizza M; Oturan MA
    J Phys Chem A; 2009 Oct; 113(41):10988-93. PubMed ID: 19764768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the interaction between chlorophenols and lysozyme in solution.
    Zhang HM; Xu YQ; Zhou QH; Wang YQ
    J Photochem Photobiol B; 2011 Sep; 104(3):405-13. PubMed ID: 21596581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of 2,4-dichlorophenol by using glow discharge electrolysis.
    Lu Q; Yu J; Gao J
    J Hazard Mater; 2006 Aug; 136(3):526-31. PubMed ID: 16600477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of endocrine disrupting chemicals in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation.
    Li C; Li XZ
    Water Sci Technol; 2007; 55(1-2):217-23. PubMed ID: 17305143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters.
    Hamdaoui O; Naffrechoux E
    J Hazard Mater; 2007 Aug; 147(1-2):401-11. PubMed ID: 17289259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.