These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 15269205)
21. Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution. Stevenson CE; Sargent F; Buchanan G; Palmer T; Lawson DM Structure; 2000 Nov; 8(11):1115-25. PubMed ID: 11080634 [TBL] [Abstract][Full Text] [Related]
22. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli. Sandu C; Brandsch R Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167 [TBL] [Abstract][Full Text] [Related]
23. Functional analysis of the Escherichia coli molybdopterin cofactor biosynthesis protein MoeA by site-directed mutagenesis. Sandu C; Brandsch R Biol Chem; 2002 Feb; 383(2):319-23. PubMed ID: 11934270 [TBL] [Abstract][Full Text] [Related]
24. Structure of hypothetical Mo-cofactor biosynthesis protein B (ST2315) from Sulfolobus tokodaii. Antonyuk SV; Strange RW; Ellis MJ; Bessho Y; Kuramitsu S; Shinkai A; Yokoyama S; Hasnain SS Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Dec; 65(Pt 12):1200-3. PubMed ID: 20054111 [TBL] [Abstract][Full Text] [Related]
25. Genetic characterization of moaB mutants of Escherichia coli. Kozmin SG; Schaaper RM Res Microbiol; 2013 Sep; 164(7):689-94. PubMed ID: 23680484 [TBL] [Abstract][Full Text] [Related]
26. MoeA, an enzyme in the molybdopterin synthesis pathway, is required for rifamycin SV production in Amycolatopsis mediterranei U32. Wang W; Zhang W; Lu J; Yang Y; Chiao J; Zhao G; Jiang W Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):139-46. PubMed ID: 12382055 [TBL] [Abstract][Full Text] [Related]
27. In vivo interactions between gene products involved in the final stages of molybdenum cofactor biosynthesis in Escherichia coli. Magalon A; Frixon C; Pommier J; Giordano G; Blasco F J Biol Chem; 2002 Dec; 277(50):48199-204. PubMed ID: 12372836 [TBL] [Abstract][Full Text] [Related]
28. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Sander B; Tria G; Shkumatov AV; Kim EY; Grossmann JG; Tessmer I; Svergun DI; Schindelin H Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2050-60. PubMed ID: 24100323 [TBL] [Abstract][Full Text] [Related]
29. Structural Framework for Metal Incorporation during Molybdenum Cofactor Biosynthesis. Kasaragod VB; Schindelin H Structure; 2016 May; 24(5):782-788. PubMed ID: 27112598 [TBL] [Abstract][Full Text] [Related]
30. The Drosophila molybdenum cofactor gene cinnamon is homologous to three Escherichia coli cofactor proteins and to the rat protein gephyrin. Kamdar KP; Shelton ME; Finnerty V Genetics; 1994 Jul; 137(3):791-801. PubMed ID: 8088525 [TBL] [Abstract][Full Text] [Related]
31. Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli. Neumann M; Leimkühler S FEBS J; 2008 Nov; 275(22):5678-89. PubMed ID: 18959753 [TBL] [Abstract][Full Text] [Related]
32. In vitro molybdenum ligation to molybdopterin using purified components. Nichols JD; Rajagopalan KV J Biol Chem; 2005 Mar; 280(9):7817-22. PubMed ID: 15632135 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. Llamas A; Mendel RR; Schwarz G J Biol Chem; 2004 Dec; 279(53):55241-6. PubMed ID: 15504727 [TBL] [Abstract][Full Text] [Related]
34. The neurotransmitter receptor-anchoring protein gephyrin reconstitutes molybdenum cofactor biosynthesis in bacteria, plants, and mammalian cells. Stallmeyer B; Schwarz G; Schulze J; Nerlich A; Reiss J; Kirsch J; Mendel RR Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1333-8. PubMed ID: 9990024 [TBL] [Abstract][Full Text] [Related]
35. Dimerization of the plant molybdenum insertase Cnx1E is required for synthesis of the molybdenum cofactor. Krausze J; Probst C; Curth U; Reichelt J; Saha S; Schafflick D; Heinz DW; Mendel RR; Kruse T Biochem J; 2017 Jan; 474(1):163-178. PubMed ID: 27803248 [TBL] [Abstract][Full Text] [Related]
36. Structural insights into putative molybdenum cofactor biosynthesis protein C (MoaC2) from Mycobacterium tuberculosis H37Rv. Srivastava VK; Srivastava S; Arora A; Pratap JV PLoS One; 2013; 8(3):e58333. PubMed ID: 23526978 [TBL] [Abstract][Full Text] [Related]
37. The active site of the molybdenum cofactor biosynthetic protein domain Cnx1G. Kuper J; Winking J; Hecht HJ; Mendel RR; Schwarz G Arch Biochem Biophys; 2003 Mar; 411(1):36-46. PubMed ID: 12590921 [TBL] [Abstract][Full Text] [Related]
38. Rescue of molybdenum cofactor biosynthesis in gephyrin-deficient mice by a Cnx1 transgene. Grosskreutz Y; Betz H; Kneussel M Biochem Biophys Res Commun; 2003 Feb; 301(2):450-5. PubMed ID: 12565882 [TBL] [Abstract][Full Text] [Related]
39. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli. Hasona A; Ray RM; Shanmugam KT J Bacteriol; 1998 Mar; 180(6):1466-72. PubMed ID: 9515915 [TBL] [Abstract][Full Text] [Related]
40. Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis. Rizzi M; Schindelin H Curr Opin Struct Biol; 2002 Dec; 12(6):709-20. PubMed ID: 12504674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]