BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 15269251)

  • 81. Beta-Band Resonance and Intrinsic Oscillations in a Biophysically Detailed Model of the Subthalamic Nucleus-Globus Pallidus Network.
    Koelman LA; Lowery MM
    Front Comput Neurosci; 2019; 13():77. PubMed ID: 31749692
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Uncoupling the roles of firing rates and spike bursts in shaping the STN-GPe beta band oscillations.
    Bahuguna J; Sahasranamam A; Kumar A
    PLoS Comput Biol; 2020 Mar; 16(3):e1007748. PubMed ID: 32226014
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Transmission of the subthalamic nucleus oscillatory activity to the cortex: a computational approach.
    Hadipour Niktarash A
    J Comput Neurosci; 2003; 15(2):223-32. PubMed ID: 14512748
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys.
    Gagnon D; Eid L; Coudé D; Whissel C; Di Paolo T; Parent A; Parent M
    Front Neuroanat; 2018; 12():38. PubMed ID: 29867377
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Computational Model of Recurrent Subthalamo-Pallidal Circuit for Generation of Parkinsonian Oscillations.
    Shouno O; Tachibana Y; Nambu A; Doya K
    Front Neuroanat; 2017; 11():21. PubMed ID: 28377699
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys.
    Masilamoni GJ; Groover O; Smith Y
    Neurobiol Dis; 2017 Apr; 100():9-18. PubMed ID: 28042095
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Subthalamic and pallidal oscillatory activity in patients with Neurodegeneration with Brain Iron Accumulation type I (NBIA-I).
    Huebl J; Poshtiban A; Brücke C; Siegert S; Bock A; Koziara H; Kmiec T; Rola R; Mandat T; Kühn AA
    Clin Neurophysiol; 2019 Apr; 130(4):469-473. PubMed ID: 30771723
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Parkinsonism Alters Beta Burst Dynamics across the Basal Ganglia-Motor Cortical Network.
    Yu Y; Escobar Sanabria D; Wang J; Hendrix CM; Zhang J; Nebeck SD; Amundson AM; Busby ZB; Bauer DL; Johnson MD; Johnson LA; Vitek JL
    J Neurosci; 2021 Mar; 41(10):2274-2286. PubMed ID: 33483430
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Metabolic effects of nigrostriatal denervation in basal ganglia.
    Hirsch EC; Périer C; Orieux G; François C; Féger J; Yelnik J; Vila M; Levy R; Tolosa ES; Marin C; Trinidad Herrero M; Obeso JA; Agid Y
    Trends Neurosci; 2000 Oct; 23(10 Suppl):S78-85. PubMed ID: 11052224
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Regulation of dopamine receptor and neuropeptide expression in the basal ganglia of monkeys treated with MPTP.
    Betarbet R; Greenamyre JT
    Exp Neurol; 2004 Oct; 189(2):393-403. PubMed ID: 15380489
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA.
    Vila M; Levy R; Herrero MT; Ruberg M; Faucheux B; Obeso JA; Agid Y; Hirsch EC
    J Neurosci; 1997 Jan; 17(2):765-73. PubMed ID: 8987798
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Low-pass filter properties of basal ganglia cortical muscle loops in the normal and MPTP primate model of parkinsonism.
    Rivlin-Etzion M; Marmor O; Saban G; Rosin B; Haber SN; Vaadia E; Prut Y; Bergman H
    J Neurosci; 2008 Jan; 28(3):633-49. PubMed ID: 18199764
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey.
    Boraud T; Bezard E; Bioulac B; Gross CE
    J Neurophysiol; 2000 Mar; 83(3):1760-3. PubMed ID: 10712496
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effects of the activity of the internal globus pallidus-pedunculopontine loop on the transmission of the subthalamic nucleus-external globus pallidus-pacemaker oscillatory activities to the cortex.
    Hadipour Niktarash A; Shahidi GA
    J Comput Neurosci; 2004; 16(2):113-27. PubMed ID: 14758061
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys.
    Raz A; Frechter-Mazar V; Feingold A; Abeles M; Vaadia E; Bergman H
    J Neurosci; 2001 Feb; 21(3):RC128. PubMed ID: 11157099
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Alteration of pallidal cholinergic activity in MPTP-treated monkeys: effect of dihydro-alpha-ergocryptine (DEK).
    Curti D; Izzo E; Benzi G
    Neurosci Lett; 1994 Feb; 168(1-2):213-6. PubMed ID: 8028778
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Globus pallidus external segment.
    Kita H
    Prog Brain Res; 2007; 160():111-33. PubMed ID: 17499111
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease.
    Liu Y; Li W; Tan C; Liu X; Wang X; Gui Y; Qin L; Deng F; Hu C; Chen L
    J Neurosurg; 2014 Sep; 121(3):709-18. PubMed ID: 24905564
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.
    During MJ; Kaplitt MG; Stern MB; Eidelberg D
    Hum Gene Ther; 2001 Aug; 12(12):1589-91. PubMed ID: 11529246
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters.
    Mink JW; Thach WT
    J Neurophysiol; 1991 Feb; 65(2):301-29. PubMed ID: 2016643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.