BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15269257)

  • 1. Effects of PKA-mediated phosphorylation of Snapin on synaptic transmission in cultured hippocampal neurons.
    Thakur P; Stevens DR; Sheng ZH; Rettig J
    J Neurosci; 2004 Jul; 24(29):6476-81. PubMed ID: 15269257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex.
    Chheda MG; Ashery U; Thakur P; Rettig J; Sheng ZH
    Nat Cell Biol; 2001 Apr; 3(4):331-8. PubMed ID: 11283605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential roles for snapin and synaptotagmin in the synaptic vesicle cycle.
    Yu SC; Klosterman SM; Martin AA; Gracheva EO; Richmond JE
    PLoS One; 2013; 8(2):e57842. PubMed ID: 23469084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snapin facilitates the synchronization of synaptic vesicle fusion.
    Pan PY; Tian JH; Sheng ZH
    Neuron; 2009 Feb; 61(3):412-24. PubMed ID: 19217378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of Ser-50 and Cys-66 in Snapin modulates protein structure and stability.
    Navarro A; Encinar JA; López-Méndez B; Aguado-Llera D; Prieto J; Gómez J; Martínez-Cruz LA; Millet O; González-Ros JM; Fernández-Ballester G; Neira JL; Ferrer-Montiel A
    Biochemistry; 2012 Apr; 51(16):3470-84. PubMed ID: 22471585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25.
    Yun HJ; Park J; Ho DH; Kim H; Kim CH; Oh H; Ga I; Seo H; Chang S; Son I; Seol W
    Exp Mol Med; 2013 Aug; 45(8):e36. PubMed ID: 23949442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting.
    Di Giovanni J; Sheng ZH
    EMBO J; 2015 Aug; 34(15):2059-77. PubMed ID: 26108535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snapin accelerates exocytosis at low intracellular calcium concentration in mouse chromaffin cells.
    Schmidt T; Schirra C; Matti U; Stevens DR; Rettig J
    Cell Calcium; 2013 Aug; 54(2):105-10. PubMed ID: 23726552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type VI adenylyl cyclase regulates neurite extension by binding to Snapin and Snap25.
    Wu CS; Lin JT; Chien CL; Chang WC; Lai HL; Chang CP; Chern Y
    Mol Cell Biol; 2011 Dec; 31(24):4874-86. PubMed ID: 21986494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release.
    Krapivinsky G; Mochida S; Krapivinsky L; Cibulsky SM; Clapham DE
    Neuron; 2006 Nov; 52(3):485-96. PubMed ID: 17088214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolysis of SNARE proteins alters facilitation and depression in a specific way.
    Young SM
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2614-9. PubMed ID: 15695333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNAP-29-mediated modulation of synaptic transmission in cultured hippocampal neurons.
    Pan PY; Cai Q; Lin L; Lu PH; Duan S; Sheng ZH
    J Biol Chem; 2005 Jul; 280(27):25769-79. PubMed ID: 15890653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kainate induces mobilization of synaptic vesicles at the growth cone through the activation of protein kinase A.
    Gelsomino G; Menna E; Antonucci F; Rodighiero S; Riganti L; Mulle C; Benfenati F; Valtorta F; Verderio C; Matteoli M
    Cereb Cortex; 2013 Mar; 23(3):531-41. PubMed ID: 22402347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-lasting synapse formation in cultured rat hippocampal neurons after repeated PKA activation.
    Yamamoto M; Urakubo T; Tominaga-Yoshino K; Ogura A
    Brain Res; 2005 Apr; 1042(1):6-16. PubMed ID: 15823247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus.
    Matsuzaki K; Miyazaki K; Sakai S; Yawo H; Nakata N; Moriguchi S; Fukunaga K; Yokosuka A; Sashida Y; Mimaki Y; Yamakuni T; Ohizumi Y
    Eur J Pharmacol; 2008 Jan; 578(2-3):194-200. PubMed ID: 17976577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and pharmacological demonstration of differential recruitment of cAMP-dependent protein kinases by synaptic activity.
    Woo NH; Duffy SN; Abel T; Nguyen PV
    J Neurophysiol; 2000 Dec; 84(6):2739-45. PubMed ID: 11110804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of silent and weak synapses by cAMP-dependent protein kinase in cultured cerebellar granule neurons.
    Cousin MA; Evans GJ
    J Physiol; 2011 Apr; 589(Pt 8):1943-55. PubMed ID: 21486806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP-dependent protein kinase modulates expiratory neurons in vivo.
    Lalley PM; Pierrefiche O; Bischoff AM; Richter DW
    J Neurophysiol; 1997 Mar; 77(3):1119-31. PubMed ID: 9084586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of type VI adenylyl cyclase by Snapin, a SNAP25-binding protein.
    Chou JL; Huang CL; Lai HL; Hung AC; Chien CL; Kao YY; Chern Y
    J Biol Chem; 2004 Oct; 279(44):46271-9. PubMed ID: 15319443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of postsynaptic Ca(2+) stores modulates glutamate receptor cycling in hippocampal neurons.
    Maher BJ; Mackinnon RL; Bai J; Chapman ER; Kelly PT
    J Neurophysiol; 2005 Jan; 93(1):178-88. PubMed ID: 15604462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.