These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15269277)

  • 21. The evolution of seminal ribonuclease: pseudogene reactivation or multiple gene inactivation events?
    Sassi SO; Braun EL; Benner SA
    Mol Biol Evol; 2007 Apr; 24(4):1012-24. PubMed ID: 17267422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhodopsin population genetics and local adaptation: variable dim-light vision in sand gobies is illuminated.
    Ebert D; Andrew RL
    Mol Ecol; 2009 Oct; 18(20):4140-2. PubMed ID: 19857228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
    Takahashi Y; Yokoyama S
    Genetics; 2005 Nov; 171(3):1153-60. PubMed ID: 16079229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates.
    Yokoyama S; Tada T; Liu Y; Faggionato D; Altun A
    BMC Evol Biol; 2016 Mar; 16():64. PubMed ID: 27001075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes.
    Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD
    J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233.
    Hiramatsu C; Radlwimmer FB; Yokoyama S; Kawamura S
    Vision Res; 2004; 44(19):2225-31. PubMed ID: 15208009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Diversity of visual pigments and phototransduction systems on the basis of both molecular phylogenetic and functional protein analyses].
    Terakita A; Shichida Y
    Tanpakushitsu Kakusan Koso; 1999 Mar; 44(3):217-25. PubMed ID: 10097653
    [No Abstract]   [Full Text] [Related]  

  • 28. Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes.
    Berenbrink M
    J Exp Biol; 2007 May; 210(Pt 9):1641-52. PubMed ID: 17449830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein structural influences in rhodopsin evolution.
    Marsh L; Griffiths CS
    Mol Biol Evol; 2005 Apr; 22(4):894-904. PubMed ID: 15647521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of site-specific heterogeneous evolution on phylogenetic reconstruction: a simple evaluation.
    Cheng Q; Su Z; Zhong Y; Gu X
    Gene; 2009 Jul; 441(1-2):156-62. PubMed ID: 18778757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
    Hunt DM; Cowing JA; Wilkie SE; Parry JW; Poopalasundaram S; Bowmaker JK
    Photochem Photobiol Sci; 2004 Aug; 3(8):713-20. PubMed ID: 15295625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The spectral tuning in the short wavelength-sensitive type 2 pigments.
    Yokoyama S; Tada T
    Gene; 2003 Mar; 306():91-8. PubMed ID: 12657470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins.
    Porter ML; Cronin TW; McClellan DA; Crandall KA
    Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular evolution of visual pigments of freshwater crayfishes (Decapoda: Cambaridae).
    Crandall KA; Cronin TW
    J Mol Evol; 1997 Nov; 45(5):524-34. PubMed ID: 9342400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Structural and functional analogy of eucaryotic rhodopsins and hormone receptors].
    Kuo CH; Miki N
    Tanpakushitsu Kakusan Koso; 1989 May; 34(5):494-504. PubMed ID: 2546185
    [No Abstract]   [Full Text] [Related]  

  • 36. The molecular origin and evolution of dim-light vision in mammals.
    Bickelmann C; Morrow JM; Du J; Schott RK; van Hazel I; Lim S; Müller J; Chang BS
    Evolution; 2015 Nov; 69(11):2995-3003. PubMed ID: 26536060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda.
    Kashiyama K; Seki T; Numata H; Goto SG
    Mol Biol Evol; 2009 Feb; 26(2):299-311. PubMed ID: 18984904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin.
    Koyanagi M; Terakita A
    Photochem Photobiol; 2008; 84(4):1024-30. PubMed ID: 18513236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae).
    Zhou D; Zhou J; Meng L; Wang Q; Xie H; Guan Y; Ma Z; Zhong Y; Chen F; Liu J
    Gene; 2009 Jul; 441(1-2):36-44. PubMed ID: 18640249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.