BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15269541)

  • 41. Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis.
    Li K; Fan Y; He Y; Zeng L; Han X; Yan Y
    Sci Rep; 2017 Nov; 7(1):16473. PubMed ID: 29184106
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction.
    Sun J; Chen Y; Sheng J; Sun M
    Biomed Res Int; 2015; 2015():139179. PubMed ID: 26240816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conversion of sunflower oil to biodiesel by alcoholysis using immobilized lipase.
    Sagiroglu A
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):138-49. PubMed ID: 18437590
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks.
    Da Rós PC; Silva GA; Mendes AA; Santos JC; de Castro HF
    Bioresour Technol; 2010 Jul; 101(14):5508-16. PubMed ID: 20299207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.
    Kato K; Seelan S
    J Biosci Bioeng; 2010 Jun; 109(6):615-7. PubMed ID: 20471602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enzymatic esterification of free fatty acids in vegetable oils utilizing different immobilized lipases.
    von der Haar D; Stäbler A; Wichmann R; Schweiggert-Weisz U
    Biotechnol Lett; 2015 Jan; 37(1):169-74. PubMed ID: 25214229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions.
    Sánchez DA; Tonetto GM; Ferreira ML
    Biotechnol Bioeng; 2018 Jan; 115(1):6-24. PubMed ID: 28941272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Critical Role of Different Immobilized Biocatalysts of a Given Lipase in the Selective Ethanolysis of Sardine Oil.
    Moreno-Perez S; Turati DF; Borges JP; Luna P; Señorans FJ; Guisan JM; Fernandez-Lorente G
    J Agric Food Chem; 2017 Jan; 65(1):117-122. PubMed ID: 27973785
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification.
    Silva JE; Jesus PC
    An Acad Bras Cienc; 2003 Jun; 75(2):157-62. PubMed ID: 12894300
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biocatalytic methanolysis activities of cross-linked protein-coated microcrystalline lipase toward esterification/transesterification of relevant palm products.
    Raita M; Laosiripojana N; Champreda V
    Enzyme Microb Technol; 2015 Mar; 70():28-34. PubMed ID: 25659629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of transesterification of olive oil with methanol catalyzed by immobilized lipase derived from an isolated Burkholderia sp. strain.
    Tran DT; Lin YJ; Chen CL; Chang JS
    Bioresour Technol; 2013 Oct; 145():193-203. PubMed ID: 23561954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate.
    Mathpati AC; Badgujar KC; Bhanage BM
    Enzyme Microb Technol; 2016 Mar; 84():1-10. PubMed ID: 26827768
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optically active trans-2-aminocyclopentanols: chemoenzymatic preparation and application as chiral ligands.
    González-Sabín J; Gotor V; Rebolledo F
    Biotechnol J; 2006; 1(7-8):835-41. PubMed ID: 16897829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alternative method to improve the ethyl valerate yield using an immobilised
    Moreira WC; Elias ALP; Osório WR; Padilha GS
    J Microencapsul; 2019 Jun; 36(4):327-337. PubMed ID: 31151367
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability.
    Yemul O; Imae T
    Biomacromolecules; 2005; 6(5):2809-14. PubMed ID: 16153122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly regioselective synthesis of 3'-O-acyl-trifluridines catalyzed by Pseudomonas cepacia lipase.
    Wang ZY; Bi YH; Zong MH
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1161-8. PubMed ID: 21822657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of Pseudomonas cepacia lipase preparations for catalysis in organic solvents.
    Secundo F; Spadaro S; Carrea G; Overbeeke PL
    Biotechnol Bioeng; 1999 Mar; 62(5):554-61. PubMed ID: 10099564
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lipophilic (hydroxy)phenylacetates by solvent-free lipase-catalyzed esterification and transesterification in vacuo.
    Weitkamp P; Weber N; Vosmann K
    J Agric Food Chem; 2008 Jul; 56(13):5083-90. PubMed ID: 18540623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodiesel production with immobilized lipase: A review.
    Tan T; Lu J; Nie K; Deng L; Wang F
    Biotechnol Adv; 2010; 28(5):628-34. PubMed ID: 20580809
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions.
    Jin J; Li D; Zhu XM; Adhikari P; Lee KT; Lee JH
    N Biotechnol; 2011 Feb; 28(2):190-5. PubMed ID: 20951847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.