BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1526967)

  • 1. Functional reconstitution of the isolated erythrocyte water channel CHIP28.
    van Hoek AN; Verkman AS
    J Biol Chem; 1992 Sep; 267(26):18267-9. PubMed ID: 1526967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein.
    Zeidel ML; Ambudkar SV; Smith BL; Agre P
    Biochemistry; 1992 Aug; 31(33):7436-40. PubMed ID: 1510932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study.
    Verbavatz JM; Brown D; Sabolić I; Valenti G; Ausiello DA; Van Hoek AN; Ma T; Verkman AS
    J Cell Biol; 1993 Nov; 123(3):605-18. PubMed ID: 7693713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel.
    Preston GM; Jung JS; Guggino WB; Agre P
    J Biol Chem; 1993 Jan; 268(1):17-20. PubMed ID: 7677994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers.
    Shi LB; Skach WR; Verkman AS
    J Biol Chem; 1994 Apr; 269(14):10417-22. PubMed ID: 7511600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching.
    Farinas J; Van Hoek AN; Shi LB; Erickson C; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11857-64. PubMed ID: 8218257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy.
    Van Hoek AN; Wiener M; Bicknese S; Miercke L; Biwersi J; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11847-56. PubMed ID: 8218256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron.
    Nielsen S; Smith BL; Christensen EI; Knepper MA; Agre P
    J Cell Biol; 1993 Jan; 120(2):371-83. PubMed ID: 7678419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k.
    Zhang R; van Hoek AN; Biwersi J; Verkman AS
    Biochemistry; 1993 Mar; 32(12):2938-41. PubMed ID: 8457558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28.
    Zhang R; Skach W; Hasegawa H; van Hoek AN; Verkman AS
    J Cell Biol; 1993 Jan; 120(2):359-69. PubMed ID: 8421053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis and association state of water channel (AQP-1) isoforms purified from six mammals.
    Schulte DJ; van Hoek AN
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Sep; 118(1):35-43. PubMed ID: 9417990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and partial characterization of candidate antidiuretic hormone water channel proteins of M(r) 55,000 and 53,000 from toad urinary bladder.
    Harris HW; Hosselet C; Guay-Woodford L; Zeidel ML
    J Biol Chem; 1992 Nov; 267(31):22115-21. PubMed ID: 1429563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and structure-function analysis of native, PNGase F-treated, and endo-beta-galactosidase-treated CHIP28 water channels.
    van Hoek AN; Wiener MC; Verbavatz JM; Brown D; Lipniunas PH; Townsend RR; Verkman AS
    Biochemistry; 1995 Feb; 34(7):2212-9. PubMed ID: 7532004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birth of water channel proteins-the aquaporins.
    Benga G
    Cell Biol Int; 2003; 27(9):701-9. PubMed ID: 12972274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein.
    Preston GM; Carroll TP; Guggino WB; Agre P
    Science; 1992 Apr; 256(5055):385-7. PubMed ID: 1373524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues.
    Hasegawa H; Ma T; Skach W; Matthay MA; Verkman AS
    J Biol Chem; 1994 Feb; 269(8):5497-500. PubMed ID: 7509789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes.
    Yang B; Verkman AS
    J Biol Chem; 2002 Sep; 277(39):36782-6. PubMed ID: 12133842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family.
    Preston GM; Agre P
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11110-4. PubMed ID: 1722319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of multiple water channel activities in Xenopus oocytes injected with mRNA from rat kidney.
    Echevarria M; Frindt G; Preston GM; Milovanovic S; Agre P; Fischbarg J; Windhager EE
    J Gen Physiol; 1993 Jun; 101(6):827-41. PubMed ID: 7687270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4.
    Shi LB; Verkman AS
    Biochemistry; 1996 Jan; 35(2):538-44. PubMed ID: 8555225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.