These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lettieri GL; Dodge A; Boer G; de Rooij NF; Verpoorte E Lab Chip; 2003 Feb; 3(1):34-9. PubMed ID: 15100803 [TBL] [Abstract][Full Text] [Related]
23. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices. Yamada M; Seki M Anal Chem; 2004 Feb; 76(4):895-9. PubMed ID: 14961718 [TBL] [Abstract][Full Text] [Related]
24. Foundations of chaotic mixing. Wiggins S; Ottino JM Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):937-70. PubMed ID: 15306478 [TBL] [Abstract][Full Text] [Related]
27. Sample dispersion for segmented flow in microchannels with rectangular cross section. Kreutzer MT; Günther A; Jensen KF Anal Chem; 2008 Mar; 80(5):1558-67. PubMed ID: 18229943 [TBL] [Abstract][Full Text] [Related]
28. Rapid mixing using two-phase hydraulic focusing in microchannels. Wu Z; Nguyen NT Biomed Microdevices; 2005 Mar; 7(1):13-20. PubMed ID: 15834516 [TBL] [Abstract][Full Text] [Related]
29. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Liu Y; Hong J; Zhang Y; Cui R; Wang J; Tan W; Li Y Nanotechnology; 2009 May; 20(18):185601. PubMed ID: 19420617 [TBL] [Abstract][Full Text] [Related]
30. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Shestopalov I; Tice JD; Ismagilov RF Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797 [TBL] [Abstract][Full Text] [Related]
31. Compact model for multi-phase liquid-liquid flows in micro-fluidic devices. Jousse F; Lian G; Janes R; Melrose J Lab Chip; 2005 Jun; 5(6):646-56. PubMed ID: 15915257 [TBL] [Abstract][Full Text] [Related]
32. Visualization and void fraction measurement of gas-liquid two-phase flow in plate heat exchanger. Asano H; Takenaka N; Fujii T; Maeda N Appl Radiat Isot; 2004 Oct; 61(4):707-13. PubMed ID: 15246421 [TBL] [Abstract][Full Text] [Related]
33. Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Rida A; Gijs MA Anal Chem; 2004 Nov; 76(21):6239-46. PubMed ID: 15516114 [TBL] [Abstract][Full Text] [Related]
34. DEP actuated nanoliter droplet dispensing using feedback control. Wang KL; Jones TB; Raisanen A Lab Chip; 2009 Apr; 9(7):901-9. PubMed ID: 19294300 [TBL] [Abstract][Full Text] [Related]
35. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Therriault D; White SR; Lewis JA Nat Mater; 2003 Apr; 2(4):265-71. PubMed ID: 12690401 [TBL] [Abstract][Full Text] [Related]
36. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373 [TBL] [Abstract][Full Text] [Related]
37. High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion. Coleman JT; McKechnie J; Sinton D Lab Chip; 2006 Aug; 6(8):1033-9. PubMed ID: 16874374 [TBL] [Abstract][Full Text] [Related]
38. Bond-detach lithography: a method for micro/nanolithography by precision PDMS patterning. Thangawng AL; Swartz MA; Glucksberg MR; Ruoff RS Small; 2007 Jan; 3(1):132-8. PubMed ID: 17294484 [TBL] [Abstract][Full Text] [Related]
39. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. Ackermann KR; Henkel T; Popp J Chemphyschem; 2007 Dec; 8(18):2665-70. PubMed ID: 18061914 [TBL] [Abstract][Full Text] [Related]
40. Electrokinetic pumping and detection of low-volume flows in nanochannels. Mela P; Tas NR; Berenschot EJ; van Nieuwkasteele J; van den Berg A Electrophoresis; 2004 Nov; 25(21-22):3687-93. PubMed ID: 15565691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]