These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 15269802)

  • 21. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy.
    Liu K; Tian Y; Burrows SM; Reif RD; Pappas D
    Anal Chim Acta; 2009 Sep; 651(1):85-90. PubMed ID: 19733740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic mixers: from microfabricated to self-assembling devices.
    Campbell CJ; Grzybowski BA
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):1069-86. PubMed ID: 15306485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic diluter based on pulse width flow modulation.
    Ainla A; Gözen I; Orwar O; Jesorka A
    Anal Chem; 2009 Jul; 81(13):5549-56. PubMed ID: 19476370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
    Melin J; van der Wijngaart W; Stemme G
    Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy.
    Park T; Lee M; Choo J; Kim YS; Lee EK; Kim DJ; Lee SH
    Appl Spectrosc; 2004 Oct; 58(10):1172-9. PubMed ID: 15527517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly.
    Therriault D; White SR; Lewis JA
    Nat Mater; 2003 Apr; 2(4):265-71. PubMed ID: 12690401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser induced fluorescence photobleaching anemometer for microfluidic devices.
    Wang GR
    Lab Chip; 2005 Apr; 5(4):450-6. PubMed ID: 15791344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated polymerase chain reaction chips utilizing digital microfluidics.
    Chang YH; Lee GB; Huang FC; Chen YY; Lin JL
    Biomed Microdevices; 2006 Sep; 8(3):215-25. PubMed ID: 16718406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of density and chemical concentration using a microfluidic chip.
    Sparks D; Smith R; Straayer M; Cripe J; Schneider R; Chimbayo A; Anasari S; Najafi N
    Lab Chip; 2003 Feb; 3(1):19-21. PubMed ID: 15100800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics.
    Gambin Y; Simonnet C; VanDelinder V; Deniz A; Groisman A
    Lab Chip; 2010 Mar; 10(5):598-609. PubMed ID: 20162235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid mixing using two-phase hydraulic focusing in microchannels.
    Wu Z; Nguyen NT
    Biomed Microdevices; 2005 Mar; 7(1):13-20. PubMed ID: 15834516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing.
    Yamada M; Hirano T; Yasuda M; Seki M
    Lab Chip; 2006 Feb; 6(2):179-84. PubMed ID: 16450025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A plug and play microfluidic device.
    Fujii T; Sando Y; Higashino K; Fujii Y
    Lab Chip; 2003 Aug; 3(3):193-7. PubMed ID: 15100773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigations of mixing process in microfluidic manifold designed according to biomimetic rule.
    Cieslicki K; Piechna A
    Lab Chip; 2009 Mar; 9(5):726-32. PubMed ID: 19224024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.