BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1526982)

  • 1. pH dependence of kinetic parameters of pepsin, rhizopuspepsin, and their active-site hydrogen bond mutants.
    Lin Y; Fusek M; Lin X; Hartsuck JA; Kezdy FJ; Tang J
    J Biol Chem; 1992 Sep; 267(26):18413-8. PubMed ID: 1526982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies of human immunodeficiency virus type 1 protease and its active-site hydrogen bond mutant A28S.
    Ido E; Han HP; Kezdy FJ; Tang J
    J Biol Chem; 1991 Dec; 266(36):24359-66. PubMed ID: 1761538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis.
    Shintani T; Nomura K; Ichishima E
    J Biol Chem; 1997 Jul; 272(30):18855-61. PubMed ID: 9228062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding HIV protease: can it be translated into effective therapy against AIDS?
    Tang J; Lin Y; Co E; Hartsuck JA; Lin X
    Scand J Clin Lab Invest Suppl; 1992; 210():127-35. PubMed ID: 1455175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sole lysine residue in porcine pepsin works as a key residue for catalysis and conformational flexibility.
    Cottrell TJ; Harris LJ; Tanaka T; Yada RY
    J Biol Chem; 1995 Aug; 270(34):19974-8. PubMed ID: 7650014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH on the activities of penicillopepsin and Rhizopus pepsin and a proposal for the productive substrate binding mode in penicillopepsin.
    Hofmann T; Hodges RS; James MN
    Biochemistry; 1984 Feb; 23(4):635-43. PubMed ID: 6424704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis.
    Simões I; Faro R; Bur D; Kay J; Faro C
    FEBS J; 2011 Sep; 278(17):3177-86. PubMed ID: 21749650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanism of action of aspartic proteinases. V. Conformational characteristics of fragments of substrate-binding sites in rhizopuspepsin and HIV-1 proteinase].
    Kashparov IV; Popov ME; Rumsh LD; Popov EM
    Bioorg Khim; 1999 Aug; 25(8):597-602. PubMed ID: 10578465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of rhizopuspepsin: an analysis of unique specificity.
    Lowther WT; Dunn BM
    Adv Exp Med Biol; 1995; 362():555-8. PubMed ID: 8540371
    [No Abstract]   [Full Text] [Related]  

  • 12. Replacements of amino acid residues at subsites and their effects on the catalytic properties of Rhizomucor pusillus pepsin, an aspartic proteinase from Rhizomucor pusillus.
    Aikawa J; Park YN; Sugiyama M; Nishiyama M; Horinouchi S; Beppu T
    J Biochem; 2001 May; 129(5):791-4. PubMed ID: 11328603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionarily conserved functional mechanics across pepsin-like and retroviral aspartic proteases.
    Cascella M; Micheletti C; Rothlisberger U; Carloni P
    J Am Chem Soc; 2005 Mar; 127(11):3734-42. PubMed ID: 15771507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on pepsin mutagenesis and recombinant rhizopuspepsinogen.
    Lin XL; Fusek M; Chen Z; Koelsch G; Han HP; Hartsuck JA; Tang J
    Adv Exp Med Biol; 1991; 306():1-8. PubMed ID: 1812694
    [No Abstract]   [Full Text] [Related]  

  • 15. Secondary enzyme-substrate interactions: kinetic evidence for ionic interactions between substrate side chains and the pepsin active site.
    Pohl J; Dunn BM
    Biochemistry; 1988 Jun; 27(13):4827-34. PubMed ID: 3139029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleavage specificities of aspartic proteinases toward oxidized insulin B chain at different pH values.
    Athaudaa SB; Takahashia K
    Protein Pept Lett; 2002 Aug; 9(4):289-94. PubMed ID: 12144505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to k(cat).
    Cao QN; Stubbs M; Ngo KQ; Ward M; Cunningham A; Pai EF; Tu GC; Hofmann T
    Protein Sci; 2000 May; 9(5):991-1001. PubMed ID: 10850809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus.
    Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL
    J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2.
    Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J
    Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active-site mobility in human immunodeficiency virus, type 1, protease as demonstrated by crystal structure of A28S mutant.
    Hong L; Hartsuck JA; Foundling S; Ermolieff J; Tang J
    Protein Sci; 1998 Feb; 7(2):300-5. PubMed ID: 9521105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.