BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 15269912)

  • 1. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay.
    Aruoja V; Kurvet I; Dubourguier HC; Kahru A
    Environ Toxicol; 2004 Aug; 19(4):396-402. PubMed ID: 15269912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters.
    Vidic T; Lah B; Berden-Zrimec M; Marinsek-Logar R
    Environ Toxicol; 2009 Oct; 24(5):472-83. PubMed ID: 18973278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters.
    Ivask A; François M; Kahru A; Dubourguier HC; Virta M; Douay F
    Chemosphere; 2004 Apr; 55(2):147-56. PubMed ID: 14761687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transversal immission patterns and leachability of heavy metals in road side soils.
    Hjortenkrans DS; Bergbäck BG; Häggerud AV
    J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium.
    Kahru A; Ivask A; Kasemets K; Põllumaa L; Kurvet I; François M; Dubourguier HC
    Environ Toxicol Chem; 2005 Nov; 24(11):2973-82. PubMed ID: 16398136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of willow for remediation of heavy metal polluted calcareous urban soils.
    Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK
    Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account.
    Hobbelen PH; Koolhaas JE; Van Gestel CA
    Environ Pollut; 2004 Jun; 129(3):409-19. PubMed ID: 15016462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solidification/stabilisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder.
    Voglar GE; Lestan D
    J Hazard Mater; 2010 Jun; 178(1-3):926-33. PubMed ID: 20207479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure].
    Sun YF; Xie ZM; Xu JM; Li J; Zhao KL
    Huan Jing Ke Xue; 2005 May; 26(3):152-6. PubMed ID: 16124489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of grinding and shaking on Cd, Pb and Zn distribution in anthropogenically impacted soils.
    Waterlot C; Bidar G; Pruvot C; Douay F
    Talanta; 2012 Aug; 98():185-96. PubMed ID: 22939146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect.
    Smith EJ; Hughes S; Lawlor AJ; Lofts S; Simon BM; Stevens PA; Stidson RT; Tipping E; Vincent CD
    Environ Pollut; 2005 Jul; 136(1):11-8. PubMed ID: 15809104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils.
    Dumat C; Quenea K; Bermond A; Toinen S; Benedetti MF
    Environ Pollut; 2006 Aug; 142(3):521-9. PubMed ID: 16338041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming.
    Hong CO; Gutierrez J; Yun SW; Lee YB; Yu C; Kim PJ
    Arch Environ Contam Toxicol; 2009 Feb; 56(2):190-200. PubMed ID: 18704256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity assessment of contaminated soils from an antitank firing range.
    Robidoux PY; Gong P; Sarrazin M; Bardai G; Paquet L; Hawari J; Dubois C; Sunahara GI
    Ecotoxicol Environ Saf; 2004 Jul; 58(3):300-13. PubMed ID: 15223256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.
    Lambert R; Grant C; Sauvé S
    Sci Total Environ; 2007 Jun; 378(3):293-305. PubMed ID: 17400282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.