BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1527043)

  • 1. Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility.
    Li L; Lagarias JC
    J Biol Chem; 1992 Sep; 267(27):19204-10. PubMed ID: 1527043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization.
    Jorissen HJ; Quest B; Lindner I; Tandeau de Marsac N; Gärtner W
    Photochem Photobiol; 2002 May; 75(5):554-9. PubMed ID: 12017484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous fluorescence assay of phytochrome assembly in vitro.
    Li L; Murphy JT; Lagarias JC
    Biochemistry; 1995 Jun; 34(24):7923-30. PubMed ID: 7794904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B.
    Kunkel T; Tomizawa K; Kern R; Furuya M; Chua NH; Schäfer E
    Eur J Biochem; 1993 Aug; 215(3):587-94. PubMed ID: 8354265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the pea phytochrome A chromophore pocket: chromophore assembly with apophytochrome A and photoreversibility.
    Deforce L; Furuya M; Song PS
    Biochemistry; 1993 Dec; 32(51):14165-72. PubMed ID: 8260501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts.
    Inomata K; Hammam MA; Kinoshita H; Murata Y; Khawn H; Noack S; Michael N; Lamparter T
    J Biol Chem; 2005 Jul; 280(26):24491-7. PubMed ID: 15878872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro.
    Elich TD; Lagarias JC
    J Biol Chem; 1989 Aug; 264(22):12902-8. PubMed ID: 2753895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores.
    Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T
    Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins.
    Cornejo J; Beale SI; Terry MJ; Lagarias JC
    J Biol Chem; 1992 Jul; 267(21):14790-8. PubMed ID: 1634523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Cph1 phytochrome assembly from stopped-flow kinetics and circular dichroism.
    Borucki B; Otto H; Rottwinkel G; Hughes J; Heyn MP; Lamparter T
    Biochemistry; 2003 Nov; 42(46):13684-97. PubMed ID: 14622015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles.
    Bongards C; Gärtner W
    Acc Chem Res; 2010 Apr; 43(4):485-95. PubMed ID: 20055450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant phytochrome of the moss Ceratodon purpureus: heterologous expression and kinetic analysis of Pr-->Pfr conversion.
    Zeidler M; Lamparter T; Hughes J; Hartmann E; Remberg A; Braslavsky S; Schaffner K; Gärtner W
    Photochem Photobiol; 1998 Dec; 68(6):857-63. PubMed ID: 9867036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro assembly of phytochrome B apoprotein with synthetic analogs of the phytochrome chromophore.
    Hanzawa H; Inomata K; Kinoshita H; Kakiuchi T; Jayasundera KP; Sawamoto D; Ohta A; Uchida K; Wada K; Furuya M
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3612-7. PubMed ID: 11248126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing protein-chromophore interactions in Cph1 phytochrome by mutagenesis.
    Hahn J; Strauss HM; Landgraf FT; Gimenèz HF; Lochnit G; Schmieder P; Hughes J
    FEBS J; 2006 Apr; 273(7):1415-29. PubMed ID: 16689929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of phytochrome using constitutive C-phycocyanin from Fremyella diplosiphon as a putative structural template.
    Parker W; Goebel P; Ross CR; Song PS; Stezowski JJ
    Bioconjug Chem; 1994; 5(1):21-30. PubMed ID: 8199230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between chromophore and protein in phytochrome identified by novel oxa-, thia- and carba-chromophores.
    Bongards C; Gärtner W
    Photochem Photobiol; 2008; 84(5):1109-17. PubMed ID: 18363618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins.
    Remberg A; Ruddat A; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1998 Jul; 37(28):9983-90. PubMed ID: 9665703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromophore topography and secondary structure of 124-kilodalton Avena phytochrome probed by Zn2(+)-induced chromophore modification.
    Sommer D; Song PS
    Biochemistry; 1990 Feb; 29(7):1943-8. PubMed ID: 2184893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of mutations in the chromophore pocket of recombinant phytochrome on chromoprotein assembly and Pr-to-Pfr photoconversion.
    Remberg A; Schmidt P; Braslavsky SE; Gärtner W; Schaffner K
    Eur J Biochem; 1999 Nov; 266(1):201-8. PubMed ID: 10542065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.